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ABSTRACT
As smart-rings emerge in both research and commercial markets,
their limited physical size remains to restrict the interaction po-
tential and input vocabulary possible. Thus, focusing on touch
interaction for its natural and preferred input potential, this early
work explores the combination of slide and microroll gestures per-
formed by the thumb in continual motion on a smart-ring’s touch
capacitive surface. We first capture over 3000 slide and microroll
gesture instances, extract features, and generate and test machine
learning models that are able to discern the slide and microroll
gestures within the same touch instance. Through the use of 18
features, our Random Forest model provides a 92.4% accuracy. We
conclude with demonstrations of potential applications utilizing
continual slide and microroll gestures, and a short discussion which
provides future research directions stemming from the positive
results obtained from this preliminary work.

CCS CONCEPTS
•Human-centered computing→Gestural input;Touch screens;
Mobile devices.
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1 INTRODUCTION
Smart-rings are becoming increasingly viable, through theminiatur-
ization of hardware and components needed, to provide interaction
for many mobile devices. Furthermore, smart-rings afford users
multiple interaction modalities [36], such as touch, gesture, and
proximal interaction, and provide a means for always-available
input [3, 4, 20, 40, 48]. However, as seen in previous devices, when
reducing the physical size, interaction capabilities are often reduced
[5, 32, 37]. With a diminished interaction space on a smart-ring, due
to the physical size, novel interaction techniques must be explored
to fully take advantage of the hardware available and to increase
the interaction bandwidth.

While smart-rings, with appropriate sensors included, provide
the ability for multiple interaction modalities, we must recognize
that we live in "a touch input world" [16]. Touch as in input modality
provides users a preferred, natural, and at times even discrete form
of interaction [3, 16, 31]. Research has focused on expanding touch
interaction capabilities for devices such as smartphones and smart-
watches. This includes using the bezels [24, 27, 35, 47], pressure
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sensing [17, 28], touch-based haptic interactions [34], multi-modal
input with common touch gestures [19, 22, 43], and rolling ges-
tures [6, 9, 32]. As smart-rings are yet an increasingly miniature
device, further exploration is needed for smart-rings to expand their
capacity for potential touch interactions.

Thus, our motivation for this work focuses on expanding touch
interaction vocabulary and capability for small hardware, specifi-
cally that of a smart-ring. Current smart-ring devices, if allowing
for touch interaction, often solely utilize taps and swipes/slides
[4, 15, 21]1. We aim to extend on this common interaction tech-
nique through the incorporation of microroll gestures [32]. Micro-
roll gestures provide us with a potential means of interaction that
either allows expanded input expressivity over that of discrete, and
limited, pressure based interaction [11, 25, 26, 30], or the ability to
be conducted anywhere on the touch surface, unlike bezel-based
interaction.

Throughout, we focus on a novel implementation allowing for
continual slide and microroll gesturing on a smart-ring touch ca-
pacitive surface. Thus, increasing the interactive touch capability
from simple slide gestures alone. We extend and differentiate on the
work previously done by Roudaut et al. [32], through the continual
nature of the slide and microroll gestures combined within the same
touch instance. In this early work, our contributions are two-fold:
C1: A machine learning model that discerns slide and microroll
gestures that take place in the same touch instance. We achieve
a model accuracy of 92.4% using a Random Forest model with 18
features; C2: Proposed applications that can benefit from the in-
creased touch interaction space allowed by real-time discerning of
slide and microroll gestures. Combined, and through final discus-
sion, we show the potential for further expanding touch interaction
capabilities on small hardware such as smart-rings. We also hope
our work motivates future research and discussion in the expansion
of touch interaction capabilities for miniature smart-ring devices,
allowing for them to become increasingly viable devices we can
utilize across our daily lives.

2 RELATEDWORK
2.1 Finger Based Micro Interactions
Many forms of finger based micro interactions on smart-rings have
been studied in previous literature. At the base of these interaction
techniques lies classic thumb to smart-ring touch interaction [4, 8,
21]. These often incorporate simple slide/swipe, tap, and/or simple
gesture recognition as input. As well, other more complex touch
interaction methods have also been explored and are discussed
below.

Area and Location Based Touch Interactions. A method of
expanding touch interaction using area of the input device was
presented by Boring et al. [10], where they introduced a novel one-
handed interaction technique called the "The Fat Thumb". Here, the
contact size of the thumbwas used to simulate pressure augmenting
interactions such as panning and zooming within a single touch
motion. A similar method was used in TouchSense [18] where dif-
ferent areas of the pad of the finger acted as input for smaller touch
screen devices. The different touch areas of the finger pad were
1Additionally, the FinchRing is a consumer smart-ring allowing for tap and swipe
gestures: https://www.finch-xr.com/ring/

distinguished through an IMU device attached to the fingernail of
the index finger.

Utilizing different contact locations of a finger have been utilized
for text entry methods [23, 46]. The inner-segments of the fingers,
where thumb-to-finger touching is possible, was used in FingerT9
[46]. An experimental prototype with force sensors attached to
finger segments was used to distinguish different segments and
the T9 input was used for the key to finger-segment mapping. In
FingerText [23], the use of finger nails as a design space for one-
handed text input was explored by placing touch sensors on the
nails of the fingers.

Rolling Based Interactions.One of the earliest works on finger
microrolling was explored by Benko et al. as a clicking operation for
multi-touch displays [6]. Within this work, an interaction technique
proposed, SimPress, used the changes in the contact area of the
finger with the touch display to simulate pressure to distinguish
clicking actions. Furthermore, Bonnet et al. [9] explored rocking of
the thumb (rolling the thumb back and forth on the touch surface)
as an alternative to tap and long press interactions. They developed
an algorithm to track both the trajectory, relative variation of the
direction, and area touched by the thumb when performing the
rocking gesture. The rocking was successfully applied, through
experimentation, for both discrete and continuous interaction.

The most detailed work on finger microrolling interaction was
carried out by Roudaut et al. [32] in the paper titled MicroRolls.
In their work, they studied the effectiveness of 6 types of discrete
thumb microrolling gestures together with slides, swipes and rub-
bing gestures. With an automatic gesture recognizer, which was
based on a K-Nearest Neighbours model, and using 10 of Rubine’s
features [33] extracted from the recorded gestures they managed
to obtain an overall recognition rate of 95.3% and a microroll recog-
nition rate of 96%. As this study showed promising results, we look
to extend on this research through two distinguishable differences.
First, we are mainly focusing on live detection of continuous and
combined gestures of slides and microrolls rather than discrete
instances of each. Second, our interest lies in discerning slides and
microrolls on miniature touch surfaces for micro devices, such as
smart-rings, where the touch capacity has a lower fidelity to that of
more advanced displays used on smartwatches and smartphones.

2.2 Stroke Based Gesture Recognition and
Feature Extraction

Feature extraction, based on stroke paths, for gesture recognition
has been heavily used in fields like optical character [1, 14, 29] and
hand gesture [38, 49] recognition. Apart from these, research has
also utilized machine learning and feature extraction for stroke
path input on a range of mobile devices [32, 47], similar to our
goals for this work. In this section we describe and discuss feature
extraction algorithms that are more commonly adapted for use on
machine learning models.

One of the most frequently used family of recognizers for stroke
gesture recognition is the $-family recognizers [2, 41, 42, 45]. The
availability of the pseudocode and implementations in many pro-
gramming languages and the fast recognition with low amount of
resource utilization are some positive factors that has resulted in
their frequent use. Alternatively, gesture recognition can be done
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Figure 1: Left: Dimensions of the smart-ring; Middle: Scale
relative to the hand while wearing the smart-ring; Right:
The 9 touch surface locations and the corresponding 24 di-
rections explored in the study.

through feature extraction and machine learning models. Rubine’s
features [33], and an extended set of Rubine like features that are
used for sketch recognition, can be easily used for stroke gesture
recognition [7, 32]. These features which are mainly based on geom-
etry, pressure, and motion are popular due to the ease of extraction
without causing any additional stress on the system resources. Early
testing, proved the $-family recognizers were not complex enough,
even though they provide a more lightweight approach, to distin-
guish between slides and microrolls. Thus, we opt for a machine
learning and feature extraction approach that is further highlighted
below and similarly used in previous works [32, 47].

3 SLIDES AND MICROROLLS:
DISTINGUISHING THE INTERACTIONS IN
CONTINUAL MOTION

Our main focus in this early work is to enable location independent
continuous slide and microroll gesture interactions on micro touch
surfaces. Thus, a user can slide their thumb around the touch sur-
face, then without lifting their thumb, microroll in any direction,
then switching back to sliding, and continually repeating the in-
teraction from there. The interaction can also be performed with
microrolling occurring first and the same gesture being performed
back-to-back. To accomplish this, we used a smart-ring designed
and built by our research team, collected input data, and generated
and evaluated models, all of which are described below.

3.1 The Smart-Ring
Custom ring hardware was designed and assembled in-house. The
electronics are built around a NINA-B306 NRF52840 Bluetooth Low
Energy module, this unit is responsible for interfacing with the
on-board sensors. For sensing capabilities, a BMI160 6-axis axis
Inertial Measurement Unit enables orientation detection and an
IQS572 capacitive touch driver is used for driving the trackpad
display board, which stacks on-top of the main PCB using a header
connector, providing a touch interaction space of approximately
17x17 mm. A curved 19mAh Lithium Polymer battery provides
power, and the on-board power management circuitry handles
power regulation and enables charging through the on-board micro
USB port. All the electronics are then housed in an ergonomically
shaped SLA 3D printed enclosure, with the curved battery sitting
inside the band to minimize the overall form-factor. The final design
of the ring and the scale relative to the hand can be seen in Figure 1.

3.2 Data Collection
To capture and understand the gestures being performed across the
touch surface, we designed an experiment to collect interaction data
from volunteers. This data allowed us to create and test machine
learning models for which we utilize to allow continuous slide and
microroll gesturing.

Volunteers. Seven volunteers (6 men, 1 woman) aged between
25-30 participated in the data collection. Volunteers had prior expe-
rience interacting with smartwatches, however had limited experi-
ence with a smart-ring.

Apparatus. The application for data collection was developed
in Java for Android using Android Studio. The experiment and
all the developed applications were run on a Samsung Galaxy S8
running Android version 9 (API level 28) together with the smart-
ring connected via Bluetooth for obtaining the input.

Design. The volunteers were required to participate in 10 ses-
sions performing individual slides and microrolls. Each session
consisted of slides and microrolls in all horizontal and vertical di-
rections possible from nine locations of the smart-ring (4 directions
x 1 center + 3 directions x 4 edges + 2 directions x 4 corners); see
Figure 1. This yields 24 slide and 24 microroll gestures for each
session, contributing to a total of 480 gestures per volunteer across
the 10 sessions, and a total of 3360 (1680 slides + 1680 microrolls)
gestures from all the volunteers.

Task. First, volunteers were given instructions and allowed to
ask questions. When ready to begin the data collection, volunteers
were then instructed to place the ring on the second phalanx of
their index finger on their dominant hand, enabling effective thumb-
to-smart-ring touch interactions; for all volunteers the smart-ring
fit snug. The task was carried out while seated [32], with their inter-
acting hand resting on a table. During the sessions, the gesture to
complete was displayed on a connected smartphone. The locations,
directions and gesture types (slide, microroll) were randomized in
every session. Volunteers were advised to complete the gesture in
a manner that was as comfortable as possible and natural to them.
A gesture was considered complete when the connection between
the thumb and touch surface was released (i.e, when the finger was
raised from the touch surface), and would trigger the next gesture
to be performed to be displayed to the volunteer. If a wrong gesture
was completed (e.g., a slide when a microroll was asked for) the
volunteer would redo the trial. A session lasted on average roughly
four minutes, with volunteers being asked to rest for at least one
minute after each session. On average each volunteer spent roughly
an hour completing the data collection.

3.3 Data Processing
Once all the data had been collected, we removed the first session
as it was considered training in order to minimize errors found
while volunteers were learning to perform the gestures. We then
concatenated all the captured gestures into a final single series
of connected and continual gestures, taken at random, with the
restriction that the locations of the end of the current motion and
start of the next motion were within a distance of 0.15 units (the
full horizontal and vertical distance of the trackpad is 1.0 units).
We opted for the collection of separated gestures, concatenating
them during data processing for three reasons: First, in order to
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Table 1: Details of the top 5 configurations of the top 3 models: t = number of tree nodes, K = neighbours, i = maximum
considered iterations, n = number of nodes in the hidden layers, l = number of hidden layers.

Random Forest K Nearest Neighbours Multi-Layer Perceptron
accuracy % details accuracy % details accuracy % details

1 92.4 t = 500 82.0 K = 1 80.3 i = 700, l = 2, n = (300, 300)
2 92.4 t = 700 79.5 K = 3 79.2 i = 500, l = 2, n = (300, 300)
3 92.4 t = 900 78.8 K = 5 78.9 i = 700, l = 2, n = (200, 200)
4 92.2 t = 300 78.4 K = 2 78.8 i = 700, l = 2, n = (500, 500)
5 91.9 t = 100 77.9 K = 7 78.6 i = 500, l = 2, n = (500, 500)

capture all possible combinations of combined gestures from all
locations, the number of trials and the length of each trial would
be significantly larger than the method utilized. This would be
infeasible for volunteers and paid participants to complete and
would make error correction more time consuming. Second, as a
byproduct of the first issue, lengthy trials can begin to affect the
interaction characteristics (such as pauses and/or slower gesturing)
of the gesture being completed. Third, while we only created and
utilized one series of combined gestures, capturing the gestures
in a separated manner allows for easy creation of multiple new
and unique gesture series, thus providing an increased amount of
unique data for model training.

The complete dataset containing the series of connected and
continual gestures was then used for extracting features using a
sliding window approach [13]; through testing, a window of 25
samples and a slide of 5 samples was used. The number of samples
per window was determined by the minimum samples for a slide
or a microroll motion that allowed for high accuracy while also
taking into account natural gesture speed seen within the data.
The gesture within each window is determined by the majority
of points of a gesture type from samples within a window. As a
microroll has more touch points captured, due to a longer gesture
duration, there are inherently more samples for a microroll than a
slide. Thus, to remove the bias that was added due to the sliding
window approach, we balanced the dataset using SMOTE [12] with
minority re-sampling. After, and in total, we had 91,804 extracted
feature samples that we used for model generation and testing.

Following a similar approach by Roudaut et al., we extracted and
used 18 features (from each window) of the 114 features described
by [7]. These 18 features2 are: mean pressure per unit length, diag-
onal length of the bounding box of all sample points in the window,
average x distance between touch points, average y distance between
touch points, mean pressure, average speed, total number of samples
with pressure lower than the mean pressure, time, mean acceleration
in x, total gesture length, mean acceleration in y, density 2 (absolute
length/area of the bounding box), maximum pressure, minimum pres-
sure, mean force, density 1 (absolute length of the stroke/distance from
first point to the last point), area of the bounding box, and ratio of
diagonal length to the area.

2These features are ordered from most to least important (using permutation feature
importance) as they pertain to the RF model.

3.4 Model Generation and Evaluation
To distinguish between the two gestures in real-time we devel-
oped four machine learning models, using binary classification, and
trained them with the features extracted from our gesture dataset.
The models used were, Support Vector Machine (SVM), Random
Forest (RF), K-Nearest Neighbour (K-NN) and a Multi-Layer Percep-
tron (MLP). Binary classificationwas used, as directionality could be
discerned through simply analyzing the difference between touch
points as well as to minimize complexity of the models.

From the entire processed dataset, we split the data in a stratified
fashion, using 80% of all samples for training and the remaining 20%
for model testing. Of the four models, the SVM model was trained
with the radial basis function kernel [39]. The RF model and K-
NN model were trained and tested multiple times with adjusted
parameters (number of trees for RF and number of neighbours for
K-NN). The values used were 100, 300, 500, 700 and 900 for RF and
values from 1 to 20 for K-NN). For the MLP model we used the same
set of iterations as above and for each iteration we used up to three
hidden layers starting from 100 nodes in each layer.

From the four models used, the highest accuracy (92.4%) was
produced by the RF model with its number of trees set to 500
followed by the K-NN model (82% with K=1) and MLP model with
an accuracy of 80% (700 iterations with two hidden layers of 300
nodes). The least accurate model was the SVM with 68% accuracy.
A detailed description of the top 5 accuracy scores for the first 3
models is given in Table 1. To further confirm that the accuracy of
our RF model was independent of the testing dataset we carried out
a 5-fold stratified cross validation on the entire randomized dataset.
The average accuracy of the cross validation results were found to
be 90.6% which further clarified our findings.

4 SAMPLE APPLICATIONS
Having produced a model with high accuracy to be able to discern
continual slide and microroll gesturing, through the following two
applications we demonstrate the potential of continual slide and
microroll gestures using a smart-ring. Our applications were built
for a Samsung Galaxy S8 running Android. To avoid memory limi-
tation issues we hosted our model on a local Python server with an
API endpoint for touch data and model prediction communication.
Demo clips can be viewed here.

4.1 Mobile Gaming
Due to the nature of mobile gaming, typical physical joystick con-
trollers are not present. This leads to the the inclusion of touch

https://drive.google.com/drive/folders/1xFmtI5qL-oTu3ze7Cx-UYDdnBEMMl4Du?usp=sharing
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Figure 2: Game application using continual slide and microroll gestures. First, the user slides up to have the character move
up through the hall (frames left of the grey arrow and faded character depict this movement). Then, the user microrolls to the
right to have the camera circle around the character (frames right of the grey arrow) before being able to move back to a slide
to keep the character walking.

Figure 3: Map application using continual slide and microroll gestures. Here, the user can pan around the map using slide
gestures (image left depicts sliding to the right using a slide to the right). When needed, the user can zoom-in or -out using up
and down microrolling gestures respectively (image right depicts zooming-in through an upward microroll).

screen joysticks. Typically, a game may require one joystick for
character movement and another for camera movement. Through
the use of slide and microroll gestures, we can incorporate these
two interactions within the same smart-ring. As seen in Figure
2, the character can be moved throughout the game environment
using slide gestures, as one typically would on a touch screen joy-
stick. When needed, the user can microroll their thumb to adjust
the camera, before changing back to a slide to keep the character
moving. This allows for a very fluid interaction, utilizing a single
smart-ring. Additionally, the microrolling gesture could be imple-
mented to move the character at a faster pace, or allow for quick
item selection throughout game play.

4.2 Map Navigation
When searching for a location on a map, the entire interaction is
often a set of discrete slide and pinch gestures. Here we propose uti-
lizing the continual slide and microroll gestures implemented in our
work to perform the panning and zooming interactions respectively.
As demonstrated in Figure 3, a user can slide on the smart-ring to
pan around the map. They can then perform an upwards microroll
gesture to zoom-in, or conversely a downward microroll gesture to
zoom-out. The user can then, as before, move to a sliding gesture to
continue panning. This continuous interaction between slide and
microroll gestures mimics the discrete interactions typically taken
place. Additionally, with the limited touch area on a smart-ring,
the incorporation of both slide and microroll gestures allows the
interaction to remain fluid, without the need for mode switching
through a separate gesture.

5 DISCUSSION
As seen in many previous works [5, 32, 37], limitations in interac-
tion occur as devices become smaller. Novel methods of interaction
can enable an increased input vocabulary, something that is nec-
essary so that the device can perform functions as needed. While
devices such as smart-rings are becoming more feasible, their size
greatly effects the interactions that we can utilize. Thus, we propose
that microrolling can be an optimal gesture of choice to further
expand smart-ring touch interaction due to its limited need for
touch area and the potential for combination with an already famil-
iar sliding gesture. Our early results, with a 92.4% model accuracy,
suggest that combined slide and microroll gestures have the ability
to be discerned within a single touch instance. Thus, in doubling
the interaction vocabulary, not only can we discern independent
interactions, but we can reduce the need to clutch by allowing the
gestures to occur in the same touch instance.

As our work extends that of the research done by Roudaut et al.
[32], we note both similarities and differences regarding our im-
plementation. First, while we did not capture quantitative data for
performance metrics and qualitative comments from volunteers, we
note that the work done Roudaut et al. suggests that microrolls have
the potential to outperform other menuing techniques and while
not statistically significant, microrolls were rated as the interaction
technique of choice. Second, model results were relatively similar,
with Roudaut et al. achieving 96.1% accuracy for microrolls and
95.1% accuracy for slides. Notably, in their work, slides and micro-
rolls caused the most error when discerning the two gestures. Due
to the many similarities in the gesture, we attempted to correct for
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this error in recognition through an increased feature set, primarily
through the use of pressure detection. Finally, as the smart-ring has
a smaller touch area and resolution than that used by Roudaut et al.,
the model holds up well for our goal of achieving the interaction
on a micro-device, justifying its use in future smart-ring iterations
and interaction use cases.

From the models that we had trained and tested it was evident
that when the length of the sliding window was increased we could
obtain a better model with higher accuracy. However, we found
that when predicting gestures in real time, the gesture had to be
performed very slowly in order to obtain the necessary amount of
data samples tomake a prediction (i.e., to fulfill the size of the sliding
window). It should also be noted that through our applications we
detected a slight increase in the number of correct sliding gesture
predictions when the sliding gesture occurred across the length of
the touch surface. Thus, we believe that while our model was able
to discern the two gestures with high accuracy, one of the defining
features of the two gestures are their overall length and speed of
the interaction (as touch points are recorded further apart with
greater speed) used for interaction.

There are limitations in both the hardware and model genera-
tion methods to note. Through iteration, we would aim to correct
for these in future works. First, the Bluetooth module used within
the smart-ring prototype has limited transmission rates. Thus, this
limited transmission could affect both the model training as well as
real-time gesture predictions in applications. Secondly, our current
model utilization is limited to android based mobile devices. The
lack of memory to embed the model within our applications leads
us to making predictions remotely through an API based, locally
hosted, web service. The latency issues due to data transmission
speeds with such a system could also affect the gesture prediction
speeds of our applications. This is especially a concern in scenarios
like a first person shooter game where reaction speed is a crucial
factor. For applications, such as map navigation and search, where
a slight lag between when the gesture and the required action is
permitted, more complex models can be utilized to provide predic-
tions with better accuracy. Furthermore, with the rapid increase
in capable and miniaturized hardware, these increasingly smaller
and more powerful chips will quickly mitigate this issue in the near
future.

In future, we aim to further explore the potential that slide and
microroll gestures allow, especially as they pertain to small form
factors such as smart-ring devices. While in this work we only
explore four directions, we hope to increase the number of allow-
able interactive directions to eight. Through a larger study, with
an expanded set of participants and trials, and updated hardware,
we believe we can improve upon the model’s performance. Fur-
thermore, we believe the potential for use is not limited to the
applications shown. Our research team aims to explore text entry
utilizing slide and microroll gestures. Text entry is notoriously dif-
ficult on small form factors [48] or through joystick interaction
[44], and microrolls could allow for layer and function commands
to be invoked with ease. We also look to demonstrate the potential
capacity for interaction while eyes-free of the smart-ring. As our
implementation was location independent, unlike precise tapping
or edge based interaction, we feel the use of slide and microroll

gestures could allow for unimpeded interaction across a range of
eyes-free scenarios, yet needs further study.

6 CONCLUSION
This work provides an early look at our research focusing on ex-
panding touch interaction capabilities for smart-ring devices. Due
to the limited interaction space available, touch interactions are
often held to simple slide and tap gestures; this limits the total
usable interaction vocabulary, thus restricting overall use cases
for smart-rings. In order to expand current touch capabilities, we
explore the combination of slide and microrolling gestures that
can occur within the same touch instance. Through data capture,
feature extraction, model creation and validation, we achieve an ac-
curacy of 92.4% through an RF model to discern slide and microroll
gestures within the same touch instance. We highlight our find-
ings and provide two applications that can benefit from continual
slide and microroll gesturing. Finally, we discuss limitations and
future work that will carry this research forward, allowing us, and
the broader research community, to further explore the potential
interaction capabilities of smart-rings.
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