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Abstract

Smartwatches have become increasingly popular for health and fitness track-

ing. Worn on the body, and equipped with powerful sensors, smartwatches enable

comprehensive and ubiquitous health data collection. Exploring this collected data

on the smartwatch is, however, less comprehensive and is largely unrealized. The

small screen size and many daily scenarios of use are often considered challenges

which limit exploratory capability. Yet, the immediate availability of the smart-

watch remains to offer potential for actionable and in-situ insights derived from

the collected data. As such, this dissertation introduces databiting, a novel concept

for lightweight and transient data exploration that supports in-situ exploration.

Before realizing databiting, we conducted an empirical study with 18 individu-

als to better understand their smartwatch data exploration needs. We captured and

analyzed 205 personal health data queries to understand where, when, and why

these queries were desired. This analysis combined qualitative insights with quan-

titative metrics, uncovering patterns that inform the design and implementation of

databiting on the smartwatch. We further identified key dimensions such as inter-

rogatives, data sources, aggregations, and filtering mechanisms, which provide a

foundation for enhancing natural language processing capabilities.

We then examined preferences of voice assistant responses to personal health

data queries, as an additional output modality to visualization. Insights were gath-

ered on perceived quality, behavior, comprehensibility, and efficiency to a variety

of answer structures, providing guidelines to support databiting through an effec-

tive and complementary output modality.

Using these findings, we then developed DataWatch, a novel smartwatch appli-

cation which facilitates in-situ exploration of fitness data through lightweight and

transient touch and speech interactions. DataWatch supports Single Value, Browse,
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and Compare exploration types. Furthermore, users can explore their data during

different workout phases—before, during, and after a workout—enhancing one’s

ability to gain insights and make informed decisions while in-situ.

Overall, this research demonstrates the feasibility and benefits of databiting on

smartwatches, providing a foundation for future advancements in personalized data

exploration on wearable devices. DataWatch exemplifies how smartwatch health

applications can begin to evolve within their means to meet user expectations, pro-

vide increased actionable insights, and motivate deeper engagement with health

data.
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Lay Summary

This thesis focuses on enhancing how people interact with their personal health

data on smartwatches. We introduce the concept of databiting, with the goal

of allowing exploration of data in both a quick and easy manner. Through a

learned understanding of peoples’ smartwatch data exploration needs, we devel-

oped DataWatch. DataWatch is an Apple Watch application allowing people to

question and explore their past collected fitness data before, during, and after a

workout. By enabling further exploration on the smartwatch, from that of the

current visualizations, DataWatch provides the potential for increased actionable

insights and motivation in exploring one’s data. Our findings not only demonstrate

that people desire more interactive and insightful health data exploration on their

smartwatches, but also validate that such exploration directly on the smartwatch

is both feasible and beneficial. Finally, results guide future advancements for in-

creasingly personalized and capable health data exploration on the smartwatch.

v



Preface

Publications Included in Thesis

Sections of this thesis have been published in conference proceedings or jour-

nals. We note, both the ACM and IEEE (publishers for which the following work

has been published to) provide confirmation that published material can be used in

a dissertation12. The following is a list of publications in which portions of this

thesis work appeared, organized by chapter. For each of the publications listed be-

low, I was a either a lead or co-lead for the identification and design of the research,

building of study methodologies and research instruments, conducting of study par-

ticipation with participants, analysis of data, and preparation of manuscripts sub-

mitted. Moreover, each contributing publication was the result of collaborations,

both local and abroad. For each, I further highlight the nature of any collaborative

work that took place below.

Portions of Chapter 3

Bradley Rey, Bongshin Lee, Eun Kyoung Choe and Pourang Irani. 2024.

Databiting: Lightweight, Transient, and Insight Rich Exploration of Personal Data,

in IEEE Computer Graphics and Applications, vol. 44, no. 2, pp. 65-72, March-

April 2024. DOI: https://doi.org/10.1109/MCG.2024.3353888

The article was a collaborative effort among myself, Bongshin Lee, Eun Ky-

oung Choe, and Pourang Irani. The collaboration took shape through joint meet-

ings focused on concept creation and development, as well as later editorial work.

1https://authors.acm.org/author-resources/author-rights
2https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_

faq.pdf

vi

https://doi.org/10.1109/MCG.2024.3353888
https://authors.acm.org/author-resources/author-rights
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf


Portions of Chapter 4

Bradley Rey, Bongshin Lee, Eun Kyoung Choe, and Pourang Irani. 2023.

Investigating In-Situ Personal Health Data Queries on Smartwatches. Proceedings

of the ACM Interactive Mobile Wearable Ubiquitous Technologies, 6, 4, Article

179, December 2022, 19 pages. DOI: https://doi.org/10.1145/3569481

The article was a collaborative effort among myself, Bongshin Lee, Eun Ky-

oung Choe, and Pourang Irani. The collaboration took shape through combined ef-

forts surrounding ideation, study design and editorial work. Furthermore, Charles-

Olivier Dufresne-Camaro supported efforts in the data analysis/coding process

highlighted within the chapter.

Portions of Chapter 5

Bradley Rey, Charles-Olivier Dufresne-Camaro, and Pourang Irani. 2023. To-

wards Efficient Interaction for Personal Health Data Queries on Smartwatches. In

Proceedings of the 25th International Conference on Mobile Human-Computer In-

teraction, Article 18, 1–7. https://doi.org/10.1145/3565066.3608700

The article was a collaborative effort among myself, Charles-Olivier Dufresne-

Camaro, and Pourang Irani. Charles-Olivier Dufresne-Camaro supported efforts

in the data analysis/coding process highlighted within the chapter and provided

editorial support.

Portions of Chapter 6

Bradley Rey, Yumiko Sakamoto, Jaisie Sin and Pourang Irani. 2024. Un-

derstanding User Preferences of Voice Assistant Answer Structures for Personal

Health Data Queries. In Proceedings of the 25th International Conference on

Conversational User Interfaces, Article 18, 1–7. https://doi.org/10.1145/

3565066.3608700

The article was a collaborative effort among myself, Yumiko Sakamoto, Jaisie

Sin, and Pourang Irani. Yumiko Sakamoto collaborated on study design, supported

data analysis procedures, and editorial work. Jaisie Sin collaborated on study de-

sign and editorial work.

vii

https://doi.org/10.1145/3569481
https://doi.org/10.1145/3565066.3608700
https://doi.org/10.1145/3565066.3608700
https://doi.org/10.1145/3565066.3608700


Thesis Publications in Progress

Sections of this thesis contain work of a publication in progress, and is to be

submitted for peer-review at a later date.

Portions of Chapter 7

Bradley Rey et al. DataWatch: Fostering Exploration of Physical Activity

Data on the Smartwatch Leveraging Speech and Touch Interaction for In-Situ In-

sight

All work in this chapter is solely my own. However, discussions surround-

ing the work put forward in Chapter 3 and Chapter 4 influenced aspects of the

DataWatch application and study methodology. As such, Bongshin Lee, Eun Ky-

oung Choe, and Pourang Irani have provided indirect collaboration.

Other Publications

Below is a list of additional works that were published during my time as a

Ph.D. student, for which I contributed varying roles:

1. Shariff AM Faleel, Yishuo Liu, Roya A Cody, Bradley Rey, Linghao Du,

Jiangyue Yu, Da-Yuan Huang, Pourang Irani, and Wei Li. 2023. T-Force:

Exploring the Use of Typing Force for Three State Virtual Keyboards. In

Proceedings of the 2023 CHI Conference on Human Factors in Computing

Systems (CHI ’23). Association for Computing Machinery, New York, NY,

USA, Article 723, 1–15. https://doi.org/10.1145/3544548.3580915

2. Bradley Rey, Kening Zhu, Simon Tangi Perrault, Sandra Bardot, Ali Ne-

shati, and Pourang Irani. 2022. Understanding and Adapting Bezel-to-

Bezel Interactions for Circular Smartwatches in Mobile and Encumbered

Scenarios. Proc. ACM Human Computer Interaction 6, MHCI, Article 201

(September 2022), 28 pages. https://doi.org/10.1145/3546736

3. Sandra Bardot, Bradley Rey, Lucas Audette, Kevin Fan, Da-Yuan Huang,

Jun Li, Wei Li, and Pourang Irani. 2022. One Ring to Rule Them All: An

viii

https://doi.org/10.1145/3544548.3580915
https://doi.org/10.1145/3546736


Empirical Understanding of Day-to-Day Smartring Usage Through In-Situ

Diary Study. Proc. ACM Interactive Mobile Wearable Ubiquitous Technolo-

gies 6, 3, Article 100 (September 2022), 20 pages. https://doi.org/10.

1145/3550315

4. Anuradha Herath, Bradley Rey, Sandra Bardot, Sawyer Rempel, Lucas

Audette, Huizhe Zheng, Jun Li, Kevin Fan, Da-Yuan Huang, Wei Li, and

Pourang Irani. 2022. Expanding Touch Interaction Capabilities for Smart-

rings: An Exploration of Continual Slide and Microroll Gestures. In Ex-

tended Abstracts of the 2022 CHI Conference on Human Factors in Com-

puting Systems (CHI EA ’22). Association for Computing Machinery, New

York, NY, USA, Article 292, 1–7. https://doi.org/10.1145/3491101.

3519714

5. Fouad Alallah, Shariff Faleel, Yumiko Sakamoto, Bradley Rey, and Pourang

Irani. 2022. SSCA: Situated Space-time Cube Analytics. EuroVis 2022 -

Short Papers. https://doi.org/10.2312/evs.20221088

6. Ali Neshati, Fouad Alallah, Bradley Rey, Yumiko Sakamoto, Marcos Ser-

rano, and Pourang Irani. 2021. SF-LG: Space-Filling Line Graphs for Vi-

sualizing Interrelated Time-series Data on Smartwatches. In Proceedings of

the 23rd International Conference on Mobile Human-Computer Interaction

(MobileHCI ’21). Association for Computing Machinery, New York, NY,

USA, Article 5, 1–13. https://doi.org/10.1145/3447526.3472040

7. Sandra Bardot, Surya Rawat, Duy Thai Nguyen, Sawyer Rempel, Huizhe

Zheng, Bradley Rey, Jun Li, Kevin Fan, Da-Yuan Huang, Wei Li, and

Pourang Irani. 2021. ARO: Exploring the Design of Smart-Ring Interac-

tions for Encumbered Hands. In Proceedings of the 23rd International Con-

ference on Mobile Human-Computer Interaction (MobileHCI ’21). Asso-

ciation for Computing Machinery, New York, NY, USA, Article 12, 1–11.

https://doi.org/10.1145/3447526.3472037

8. Shariff AM Faleel*, Bibhushan Raj Joshi* and Bradley Rey* (*equal author

contribution). Writely: Force Feedback for Non-Dominant Hand Writing

ix

https://doi.org/10.1145/3550315
https://doi.org/10.1145/3550315
https://doi.org/10.1145/3491101.3519714
https://doi.org/10.1145/3491101.3519714
https://doi.org/10.2312/evs.20221088
https://doi.org/10.1145/3447526.3472040
https://doi.org/10.1145/3447526.3472037


Training. 2021. IEEE World Haptics Conference (WHC), Montreal, QC,

Canada, 2021, pp. 340-340. https://doi.org/10.1109/WHC49131.

2021.9517209

9. Ali Neshati, Bradley Rey, Ahmed Shariff Mohommed Faleel, Sandra Bar-

dot, Celine Latulipe, and Pourang Irani. 2021. BezelGlide: Interacting with

Graphs on Smartwatches with Minimal Screen Occlusion. In Proceedings of

the 2021 CHI Conference on Human Factors in Computing Systems (CHI

’21). Association for Computing Machinery, New York, NY, USA, Article

501, 1–13. https://doi.org/10.1145/3411764.3445201

10. Sandra Bardot, Sawyer Rempel, Bradley Rey, Ali Neshati, Yumiko Sakamoto,

Carlo Menon, and Pourang Irani. 2020. Eyes-free graph legibility: using

skin-dragging to provide a tactile graph visualization on the arm. In Pro-

ceedings of the 11th Augmented Human International Conference (AH ’20).

Association for Computing Machinery, New York, NY, USA, Article 1, 1–8.

https://doi.org/10.1145/3396339.3396344

Use of Generative AI

Throughout, the use of generative AI (e.g., ChatGPT, Gemini, etc.) has been

limited to only that of editorial support. Specifically, ChatGPT has been used in

various places throughout to critique my writing in a holistic manner, rather than

providing individual grammatical edits. Prompts such as “How well do you feel

these paragraphs work together in providing [the desired argument]?” and “What

are some areas of improvement that could be incorporated into the shared text?”

were used. No other generative AI models/tools were used. All figures are original

creations, not created through the use of generative AI.

Ethics Approval

Research undertaken within this thesis spanned both the University of Man-

itoba, where I began my degree, and the University of British Columbia Okana-

x

https://doi.org/10.1109/WHC49131.2021.9517209
https://doi.org/10.1109/WHC49131.2021.9517209
https://doi.org/10.1145/3411764.3445201
https://doi.org/10.1145/3396339.3396344


gan, where I completed my degree. Within both institutions, ethics approval was

obtained before conducting studies with participants. Specifically the following

certificate numbers were obtained:

− Chapter 4 - University of Manitoba, Research Ethics Board 1, Certificate

Number HE2021-0070

− Chapter 6 - University of British Columbia Okanagan, Behavioural Re-

search Ethics Board, Certificate Number H23-00807

− Chapter 7 - University of British Columbia Okanagan, Behavioural Re-

search Ethics Board, Certificate Number H23-00805

xi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Conceptualization . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 What . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 When, Where, Why . . . . . . . . . . . . . . . . . . . . 6

1.1.4 How . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.5 Databiting Validation . . . . . . . . . . . . . . . . . . . 8

1.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Personal Informatics . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Wearable Computing . . . . . . . . . . . . . . . . . . . . . . . . 15

xii



2.3 General Smartwatch Usage . . . . . . . . . . . . . . . . . . . . . 19

2.4 The Smartwatch and Personal Data Exploration . . . . . . . . . . 22

3 Databiting: Lightweight, Transient, and Insight Rich Exploration of
Personal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The Databiting Concept . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Lightweight, Transient, and Insight Rich Exploration . . . 31

3.1.2 Device Agnostic Exploration . . . . . . . . . . . . . . . 33

3.1.3 Data Agnostic Exploration . . . . . . . . . . . . . . . . . 33

3.2 Expected Benefits of Databiting . . . . . . . . . . . . . . . . . . 34

3.2.1 Introductory and Intermediary Access . . . . . . . . . . . 34

3.2.2 Increased In-Situ Insight . . . . . . . . . . . . . . . . . . 34

3.2.3 Perceived Usefulness . . . . . . . . . . . . . . . . . . . 35

3.3 Research Considerations . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Contextual and Attentional Factors . . . . . . . . . . . . 35

3.3.2 Interaction Modalities . . . . . . . . . . . . . . . . . . . 36

3.3.3 Databiting and Broader Exploration . . . . . . . . . . . . 37

3.3.4 Personalization and Customization . . . . . . . . . . . . 38

3.3.5 Evaluation Challenges . . . . . . . . . . . . . . . . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Eliciting In-Situ Personal Health Data Queries on the Smartwatch . 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Relevant Related Work . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 In-Situ Data Collection Methods . . . . . . . . . . . . . 45

4.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Data Collection Method . . . . . . . . . . . . . . . . . . 47

4.3.3 Data Collection Application . . . . . . . . . . . . . . . . 47

4.3.4 Study Procedure . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.3 Natural Language for Personal Health Data Exploration by

Lay Individuals . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . 64

4.5.1 In-Situ and Non-In-Situ Preparation-for-Action . . . . . . 64

4.5.2 Query Insight Category Dependent on In-Situ Activity . . 65

4.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Towards Natural Language Interaction for Personal Health Data Queries
on Smartwatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Relevant Related Work . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Natural Language Query Analysis . . . . . . . . . . . . . 70

5.3 Dataset and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Coding Procedure . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Attributes of Requested Data . . . . . . . . . . . . . . . 73

5.4.2 Aggregations . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Interrogatives . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Filtering Mechanisms . . . . . . . . . . . . . . . . . . . 77

5.4.5 Components of a Personal Health Data Query . . . . . . 81

5.4.6 Response Expectations . . . . . . . . . . . . . . . . . . . 81

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Lay-Person Exploration of Personal Health Data . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 User Preferences of Voice Assistant Answers to Personal Health Data
Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Relevant Related Work . . . . . . . . . . . . . . . . . . . . . . . 87

xiv



6.2.1 Interaction with Voice Assistants . . . . . . . . . . . . . 87

6.2.2 Voice Assistants in Health Contexts . . . . . . . . . . . . 87

6.2.3 Voice Assistant Answer Structures . . . . . . . . . . . . 88

6.3 User Studies Methodology . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.3 Question Answer Structures . . . . . . . . . . . . . . . . 93

6.3.4 Participant Recruitment . . . . . . . . . . . . . . . . . . 94

6.3.5 Data and Analysis . . . . . . . . . . . . . . . . . . . . . 95

6.4 Study 1 - Response Types . . . . . . . . . . . . . . . . . . . . . 95

6.4.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Study 2 - Insight Categories . . . . . . . . . . . . . . . . . . . . 104

6.5.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.1 Implications for the Design of VA Interactions for Personal

Health Data Queries . . . . . . . . . . . . . . . . . . . . 111

6.6.2 Human Emulation and Unwavering Perceptions . . . . . 113

6.6.3 Comparisons With Commercial Personal Health Data Ques-

tion and Answering . . . . . . . . . . . . . . . . . . . . 114

6.6.4 UEQ+ Semantic Differentials . . . . . . . . . . . . . . . 116

6.6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 : Enabling In-Situ Databiting on the Smartwatch Lever-
aging Touch and Speech . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 DataWatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Design Rationales . . . . . . . . . . . . . . . . . . . . . 122

xv



7.2.2 User Interface and Interaction Design . . . . . . . . . . . 126

7.2.3 Interacting with DataWatch . . . . . . . . . . . . . . . . 129

7.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.1 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.2 Study Procedure . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.1 Interaction Usages . . . . . . . . . . . . . . . . . . . . . 137

7.4.2 Motivation for Exploration . . . . . . . . . . . . . . . . 141

7.4.3 Speech Interaction for Personal Health Data Queries . . . 142

7.4.4 Benefits of Databiting . . . . . . . . . . . . . . . . . . . 143

7.4.5 General Reactions to DataWatch . . . . . . . . . . . . . 146

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5.1 Feasibility of Databiting on the Smartwatch . . . . . . . 147

7.5.2 Reflecting on Design Guidelines . . . . . . . . . . . . . 148

7.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1 Revisiting Lightweight and Transient Interaction for Insight Rich

Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2 Towards Speech Interaction for Personal Health Data Exploration 155

8.3 Semi-Longitudinal Study Methodologies . . . . . . . . . . . . . 156

8.4 Thesis Limitations and Future Work . . . . . . . . . . . . . . . . 160

8.4.1 Who is Databiting? . . . . . . . . . . . . . . . . . . . . 160

8.4.2 Study With Apple Device Users . . . . . . . . . . . . . . 161

8.4.3 Dataset of Desired Queries . . . . . . . . . . . . . . . . 162

8.4.4 Part-of-Speech Tagging Versus Large Language Models . 163

8.4.5 Enabling Preemptive and Proactive Insight . . . . . . . . 164

8.4.6 User Adoption and Behavior Change . . . . . . . . . . . 165

xvi



9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.1 Summary Contributions of the Thesis . . . . . . . . . . . . . . . 168

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix A: Study Tutorials . . . . . . . . . . . . . . . . . . . . . . . 204

Chapter 4 Tutorial Slides . . . . . . . . . . . . . . . . . . . . . . 204

Chapter 7 Tutorial Slides . . . . . . . . . . . . . . . . . . . . . . 222

Appendix B: Dataset of Collected Queries . . . . . . . . . . . . . . . . 239

Chapter 4 Collected Data . . . . . . . . . . . . . . . . . . . . . . 239

xvii



List of Tables

1.1 Recorded personal health data question and answers using Siri on

an iPhone 14 Pro running iOS 17.3. We demonstrate this capability

on an iPhone, rather than an Apple Watch, as functionality is fur-

ther limited on the Apple Watch. The question asked, the voice as-

sistant’s response, supplementary information displayed on screen,

and the success of the interaction are provided. . . . . . . . . . . 4

4.1 Summary of demographic information, health data collection, smart-

watch usage experience, and number of responses reported from

our study participants. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Query insight categories. Please note, categories are not mutually

exclusive. ** denotes a new insight category found in our work;

* denotes an expanded insight category as compared to [3, 29, 30,

108]. Q is a question; C is a command. . . . . . . . . . . . . . . . 57

4.3 Summary of the daily activities participants were undertaking at

the time of a response, and the relation of the reported queries to

these activities: not related, before, during, after. . . . . . . . . 60

5.1 Counts of the codes for the attributes, aggregations, and filters are

shown, delineated by the in-situ relation for which the query was

elicited. We note, that 5 queries contained both time and activity

dependent filtering, as such the total count for the filtering columns

results in 210. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xviii



6.1 Questions and answers used in Study 1. The forward slash denotes

the separation between the choice of heart rate or step count topics,

one of which was chosen by the participant for use throughout the

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Questions and answers used in Study 1. The forward slash denotes

the separation between the choice of heart rate or step count topics,

one of which was chosen by the participant for use throughout the

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Recorded personal health data question and answers using Siri on

an iPhone 14 Pro running iOS 17.3. . . . . . . . . . . . . . . . . 115

7.1 Summary of demographic information, health data collection, smart-

watch usage experience, and number of tracked workouts and re-

sponses reported from our study participants. . . . . . . . . . . . 136

xix



List of Figures

1.1 To the left of the grey dashed line is one example of the current

state of exploration for mobile data visualizations. To the right,

databiting is enabled for physical activity related information. This

has the potential to provide greater influence and insight of the

current activity taking place. Notably, more in-depth long-term

data exploration is left for a later time. . . . . . . . . . . . . . . . 3

1.2 Outline of the components of this thesis, and how each interacts. . 12

2.1 The lived personal informatics model by Epstein et al. [59] as il-

lustrated by Moore et al. [128]. . . . . . . . . . . . . . . . . . . . 15

3.1 Representations of current mobile data exploration applications are

highlighted, grouped by general information richness: applications

which afford glanceable and micro-visualizations (at times com-

bined into dashboards) (top) and applications which provide po-

tential for heavyweight data analysis (bottom). . . . . . . . . . . . 29

3.2 In blue (bottom left), we highlight glanceable and micro visualiza-

tions for data exploration. In green (top right), we highlight heavy-

weight data exploration and analysis. In pink (middle), databiting,

as a concept, promotes the need for increasing information richness

while exploration remains lightweight and transient. We encourage

the reader to envision how visual data exploration can consume this

area of the graph. We present these rectangles as sketched illustra-

tions to signify the fuzzy boundaries of these forms of exploration

and potential variance within them. . . . . . . . . . . . . . . . . . 32

xx



4.1 A flow diagram of the questions asked within our data collection

application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Components within a personal health data query explored within

this chapter. We highlight various interrogatives (e.g., ”What was”),

aggregations (e.g., ”peak”), data attributes (e.g., ”heart rate”), and

filters (e.g., ”last hike”) to be considered when processing a query. 69

5.2 Left: Counts of the data types the queries were focused towards.

Right: Sub-codes within the Physical Activity code. . . . . . . . . 74

5.3 Counts of the aggregations (mathematical transforms of the re-

quested data) found within the queries. The aggregations are fur-

ther noted by explicit and implicit references. . . . . . . . . . . . 76

5.4 Counts of the interrogatives (elements used to express questions/commands

and intent) found within the queries. . . . . . . . . . . . . . . . . 77

5.5 Counts of the filtering mechanisms found within the elicited queries

(elements use to filter a subset of all data collected). . . . . . . . . 78

6.1 Study 1 mean UEQ+ ratings with 95% confidence intervals: Qual-

ity (a), Behaviour (b), Comprehensibility (c), and Efficiency (d).

Ratings are compared by the response types (Value, Open, Binary,

Range) and answer structures explored in the study. . . . . . . . . 100

6.2 Study 1 mean UEQ+ ratings with 95% confidence intervals for a)

Comprehensibility - separated by simplicity and ambiguity; and b)

Efficiency - separated by speed and efficiency. Ratings are com-

pared across the response types (Value, Open, Binary, Range) and

answer structures explored in the study. . . . . . . . . . . . . . . 101

6.3 Participant’s preference of answer structure for each response type

(Value, Open, Binary, Range) (a). Participant’s perceptions of voice

assistants (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xxi



6.4 Study 2 mean UEQ+ ratings with 95% confidence intervals: Qual-

ity (a), Behaviour (b), Comprehensibility (c), and Efficiency (d).

Ratings are compared by the insight categories (Current Status and

Value (CSV), Historical and Trend (HT), Combination and Com-

parison (CC), Goal and Performance (GP), Preemptive and Proac-

tive (PP), and Contextual (CT)) and answer structures explored in

the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Study 2 mean UEQ+ ratings with 95% confidence intervals for

Comprehensibility - separated by the simplicity and ambiguity.

Ratings are compared across the insight categories (Current Sta-

tus and Value (CSV), Historical and Trend (HT), Combination and

Comparison (CC), Goal and Performance (GP), Preemptive and

Proactive (PP), and Contextual (CT)) and answer structures ex-

plored in the study. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Participant’s preference of answer structure for each insight cate-

gory (Current Status and Value (CSV), Historical and Trend (HT),

Combination and Comparison (CC), Goal and Performance (GP),

Preemptive and Proactive (PP), and Contextual (CT)) (a). Partici-

pant’s perceptions of voice assistants (b). . . . . . . . . . . . . . . 110

xxii



7.1 DataWatch supports in-situ exploration of past tracked workout

data through multi-modal interaction. People can track and con-

trol their workouts while viewing their currently collected met-

rics , as is typical with current smartwatch health applications.

Different to these applications, people can then at any time long-

press elements on screen (elements which can be long-pressed,

and thus queried, are denoted with a blue dot) to initiate a spoken

query regarding the interacted element . Upon providing a query,

DataWatch processes the query to show the resulting output to the

person . In this Figure, a databiting instance involving compara-

tive exploration and temporal filtering is queried during a person’s

workout. Please note, screens which appear beside and below the

smartwatch are screens which can be swiped/scrolled to, from the

current displayed screen. . . . . . . . . . . . . . . . . . . . . . . 121

7.2 DataWatch supports in-situ exploration before starting a workout.

On the homepage, scrolling through the many workouts available

for tracking, people can long-press on a workout type of interest to

initiate a query . In this Figure, a databiting instance using an ac-

tivity filter and browse exploration capabilities is demonstrated .

Please note, the list of workouts available extends beyond what is

shown below the smartwatch on the left, and is reduced here for

space preservation. . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 DataWatch supports in-situ exploration after completing a work-

out. On the summary screen, shown post workout, people can

long-press on a metric of interest to initiate a query . In this Fig-

ure, a databiting instance using a temporal filter and single value

exploration capabilities is demonstrated . Please note, content

displayed around the smartwatch on the left, can be scrolled to and

from. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xxiii



7.4 DataWatch’s input screens are shown demonstrating live query in-

put. By default the keyboard is brought forward (left), which can

be switched to dictation capture (right) by selecting the micro-

phone icon at the bottom right of the screen . Input can either

be cancelled or sent for processing through the controls at the top

of either input screen . . . . . . . . . . . . . . . . . . . . . . . 128

7.5 When a provided query is either not valid or resolving the data was

not successful, a contextual message is displayed. Three potential

messages are shown here, while others exist depending on the issue

faced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Instances of databiting (represented by colored blocks) are high-

lighted within workout timelines and organized by participants (P1-

P5) and days of use (each row). Note that the spacing between

icons and the physical length of the workouts (beginning to end)

do not correspond to any specific results or times. However, the

size of the colored databiting blocks reflects the total exploration

time for each instance. . . . . . . . . . . . . . . . . . . . . . . . 138

7.7 Instances of databiting (represented by colored blocks) are high-

lighted within workout timelines and organized by participants (P6-

P10) and days of use (each row). Note that the spacing between

icons and the physical length of the workouts (beginning to end)

do not correspond to any specific results or times. However, the

size of the colored databiting blocks reflects the total exploration

time for each instance. . . . . . . . . . . . . . . . . . . . . . . . 139

7.8 Instances of databiting (represented by colored blocks) are high-

lighted within workout timelines and organized by participants (P11-

P12) and days of use (each row). Note that the spacing between

icons and the physical length of the workouts (beginning to end)

do not correspond to any specific results or times. However, the

size of the colored databiting blocks reflects the total exploration

time for each instance. . . . . . . . . . . . . . . . . . . . . . . . 140

xxiv



8.1 For discussion purposes we introduce the above framing of lightweight

and transient data exploration. We provide this here, rather than in

Chapter 3, due to the fuzzy and hard-to-quantify nature of these

boundaries. As such, with this figure we aim to provoke thought-

ful discussion rather than establish definitive measures early on.

While we recognize that the smartphone, tablet, and laptop can

provide glanceable and initial interactions we place them on the

right of the figure as this is where many interactions are meant to

take place. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xxv



Acknowledgements

First and foremost, I would like to express my gratitude and appreciation to my

supervisor, Dr. Pourang Irani. I will be forever grateful for your belief in me, the

opportunities given, guidance, conversations (both academic and non-academic),

encouragement, and support provided throughout this journey. Your initial decision

to hire me while an undergraduate student, and everything that has come since, has

forever shaped my and my family’s future. This is something I will never be able

to repay, and can only hope to carry forward. Thank you.

I would like to thank my internal committee members, Dr. Karon MacLean

and Dr. Ramon Lawrence, for their time and effort in meeting with us throughout

and providing insights and feedback. Transferring from the University of Manitoba

to the University of British Columbia affected the normal program deadlines, and

both Dr. MacLean and Dr. Lawrence accepted the internal committee role without

hesitation. I also want to thank my external committee members, Dr. Petra Isenberg

and Dr. Megan Smith for their time and effort in evaluating this thesis.

A special thank you to all my external collaborators and lab-members (of both

the HCI Lab at the University of Manitoba and OVI Lab at the University of British

Columbia). In particular, I would like to thank Dr. Yumiko Sakamoto, Dr. Bong-

shin Lee, Dr. Eun Kyoung Choe, Dr. Sandra Bardot, Charles-Olivier Dufresne-

Camaro, Anuradha Herath, Shariff Faleel, Dr. Maxime Daniel, Dr. Fouad Alallah,

Samar Sallam, Preeti Vyas, Dr. Ali Neshati, Dr. Jaisie Sin, Dr. Simon Perrault, and

Dr. Kening Zhu. To my collaborators, working with you has taught me everything

I know about conducting research and has shown me the level of excellence re-

quired to succeed. To my lab-members, I am grateful for the countless hours spent

discussing research problems, brainstorming solutions, providing research support,

and the fun times along they way. Meeting all of you has shaped this journey for

xxvi



the better, and I hope to continue our relationships beyond this degree.

To my family, thank you for instilling in me the values needed to complete

such a degree. Without your nurturing and encouragement this would not have

been possible. To my partner, Danica, we did it. Thank you for believing in me,

supporting and encouraging this degree, moving across the country with me, pa-

tiently listening while I ramble about ideas (even when you barely knew what I was

talking about), reminding me to celebrate the highs, and for comforting me during

the lows. This has been a shared journey to say the least, and I am now more than

ever excited for our future.

Finally, I would like to extend my gratitude to all those who have directly or

indirectly contributed to my research and are not named above. Particularly, I want

to thank the participants who generously gave their time and effort, and the funding

agencies that made this work possible. I hope my work, as well as future motivated

work, can carry forward a positive impact within many lives.

xxvii



Chapter 1

Introduction

“If the smartwatch can’t eventually get smarter and more useful, it

risks becoming a footnote.” - Walt Mossberg, The Verge

The potential for smartwatches to become truly influential personal health tools

lies in their ever-growing capabilities. Built with a wide range of sensors, process-

ing power, network connectivity, and various interaction modalities (i.e., visual, au-

ditory, and haptic output as well as touch, speech, and gesture input), smartwatches

are well-equipped to allow for collection and monitoring of personal health data in

real-time. So much so, the smartwatch’s current ability to ubiquitously collect

fitness and other health metrics is a major contributing factor to its widespread

adoption [49, 52].

Data collection is just the first step. It is only once this data is explored and an-

alyzed that insights can be drawn and meaningful actions taken. The smartwatch,

worn on the wrist, is seamlessly integrated into daily activities such as sleeping,

jogging, working, or simply while on-the-go. This level of integration makes the

smartwatch an ideal tool for continuous data collection. Moreover, and impor-

tantly, this integration offers capability for convenient and accessible exploration

[148, 192]. In fact, individuals are becoming increasingly dependent on the smart-

watch, even more so than their other devices, for analyzing their collected data

throughout their daily activities [34]. This in-situ exploration on the smartwatch is

crucial, as it empowers individuals to quickly and easily gain actionable insights

from their health data, enabling them to adjust their behavior in real-time, to opti-

mize their activities, and achieve their goals [40, 62].

The smartwatch’s full potential as a personal health tool remains largely unreal-

ized, however, due to inadequate capabilities for data exploration [37, 70, 131]. The
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largest barrier for exploration on the smartwatch is often seen as its small screen

size, limiting typical touch interactions and visual output [136, 155]. As such,

guidelines for exploring data specifically on the smartwatch often focus on effi-

ciently designing micro and glanceable visualizations [3, 13, 15, 26, 68, 85, 135,

136] (i.e., small screen visualizations that can be viewed and understood within

five seconds [13, 68]). While beneficial in their own right, these visualizations still

only allow for limited and discrete exploratory capabilities. This in turn, remains

to hinder utility and access to a broader range of desired insights [37, 70, 131].

By allowing users to further explore their data directly on the smartwatch, in-

dividuals can quickly and easily gain actionable insights beyond what is currently

possible. To illustrate this necessity we provide a storied example, illustrated in

Figure 1.1: Consider a hiker, Sam, who checks their smartwatch during a hike.

Current systems only display a handful of metrics, such as the current pace. Sam,

while viewing their pace, is uncertain if they are slower than usual. This lack of in-

formation richness and overall usefulness of the interface ultimately hampers full

engagement and a larger range of benefits that could be available to smartwatch

users [70, 145]. Through enhanced exploration, Sam could tap on the pace num-

ber, and ask “How does today’s pace compare to my last six hikes?”. A graph

appears, revealing that their pace is indeed slower than their average. This quick

in-situ exploration on the smartwatch provides a deeper and relational understand-

ing, enabling Sam to immediately adjust their pace towards achieving their fitness

goals.

1.1 Research Challenges

While the exploration in the above storied example may seem simple, there are

a handful of underlying research challenges that need to be solved before enabling

such exploration directly on the smartwatch.

To further highlight the complexity of the problem, and to better situate this

work, we take a moment to demonstrate capability of such querying of data on

currently marketed devices. To our knowledge, certain Apple devices through in-

teraction with their voice assistant Siri, are the only commercial devices which can
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Figure 1.1: To the left of the grey dashed line is one example of the current state

of exploration for mobile data visualizations. To the right, databiting is enabled

for physical activity related information. This has the potential to provide greater

influence and insight of the current activity taking place. Notably, more in-depth

long-term data exploration is left for a later time.

answer some personal health data questions; other commercial devices, and their

operating systems, often only recognize key words and simply provide a prompt

to open a respective health application. As such, we asked Siri a range of personal

health data questions3. These questions and responses can be seen in Table 1.1.

Notably, aside from questions pertaining to current and recently captured metrics,

responses are unsuccessful or unsupported. Furthermore, when responses are un-

successful, they often provide outright incorrect information. Thus, it is clear that

the ability to accurately and efficiently process and respond to a diverse range of

health data queries on the smartwatch necessitates further efforts.

3This is a new feature (as of December 2023) that only works with iPhones and iPads running

iOS and iPadOS greater than 17.2 and Apple Watch Series 9 and Ultra 2 running watchOS greater

than 10.2. Queries were asked on an iPhone 14 Pro running iOS 17.4.
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Table 1.1: Recorded personal health data question and answers using Siri on an iPhone 14 Pro running iOS 17.3. We

demonstrate this capability on an iPhone, rather than an Apple Watch, as functionality is further limited on the Apple Watch.

The question asked, the voice assistant’s response, supplementary information displayed on screen, and the success of the

interaction are provided.

Question Vocal Response Supplementary Information Successful

What is my current step count? 8739 steps
8739
Steps
Today

Yes

How far have I walked this week? 7.2 km

7.2 km
2.4 km Daily Average
Walking + Running Distance
May 26 - June 1, 2024

Yes

What is my move ring at? You’ve burned 210 out of your 500 calorie goal
Move Ring
Today 10:02 am

Yes

What’s my average distance walked in my last seven walks? You’ve walked or run 2 km today
2 km
Walking + Running Distance
Today

No (Incorrect
Information)

How much time did I spend walking in September 2023? 124.8 km

124.8 km
4.1 km Daily Average
Walking + Running Distance
September 2023

No (Incorrect
Information)

What was my average running pace in March? I can’t help you with that
No (Unable to
Respond)

How far have I walked since January 1st? 3.7 km
3.7 km
Walking + Running Distance
January 1, 2024

No (Incorrect
Information)
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The provided examples in Table 6.3 highlight a limitation in current solutions,

and are underscored by a variety of research challenges that remain to be explored.

First, we must understand what health data queries people feel are important. Fur-

thermore, we must recognize when, where, and why these queries arise to afford

context and understanding to the handling of the query. Then, specific understand-

ing is needed of the natural language used which dictates how we can process

such queries. Moreover, exploring how the smartwatch responds to these queries

is equally as important. Only through addressing these challenges can we begin to

realize the potential for broader, lightweight, and transient health data interaction

on the smartwatch. Below, we discuss these research challenges in further detail

and, throughout, the structure of the remainder of the thesis to follow. This outline

can also be viewed graphically in Figure 1.2.

1.1.1 Conceptualization

Can we conceptualize data exploration that represents a lightweight and tran-

sient bridge between short- and long-form data exploration?

The first focus of this thesis is on the conceptualization of our targeted explo-

ration capability of the smartwatch. Traditional research in data exploration often

concentrates on either short, glanceable, or longer, more detailed, exploration. In

Chapter 3, we position our work through a classification of what we term databit-

ing—an intermediate level of data exploration, complementing short- and long-

form exploration, that remains to provide richer insight while being transient and

lightweight. We conceptualize databiting through metaphor, highlight the envi-

sioned benefits of such exploration, and discuss associated research challenges.

Chapter 3 approaches this conceptualization through a broader perspective of data

exploration, hinting at personal health data exploration on wearable devices where

appropriate.

1.1.2 What

What personal health data queries are of interest to people for exploration on

their smartwatches throughout their daily lives?
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In order to move forward in enabling databiting on the smartwatch, Chapter 4

looks to first understand what specific personal health data queries people have for

exploration on their smartwatch, throughout their daily lives. Given the wide range

of data available and the diverse contexts in which smartwatches are used, people

likely have varied and specific desired exploration needs. Currently, our knowl-

edge in this area is limited. Research is comprised of lab-based or survey studies

[3, 154], which do not account for in-the-wild experiences, suffering from potential

recall bias [75]. Furthermore, most prior work does not share concretely reported

queries, rather they highlight broader insights into exploration practices. To ad-

dress the what challenge, Chapter 4 details a week-long in-the-wild study designed

to elicit queries from participants. We utilized a custom-built smartwatch appli-

cation which enabled participants to quickly and easily record a desired personal

health data query and other contextual information. Throughout the study, we col-

lected 205 personal health data queries which have been made publicly available

to support and facilitate future research in this area.

1.1.3 When, Where, Why

How does being in-situ influence the desired personal health data queries of

smartwatch users?

Our next focus is on understanding the context of the personal health data

queries by examining when, where, and why these queries are desired. Under-

standing when and where a query arises can help to give it context. Traditional,

desktop, data exploration often happens in one static setting. In contrast, smart-

watch data exploration, which can happen anytime and anywhere, can occur under

varied contexts and while in-situ. This in turn, may influence both the questions

posed and even the answers provided. Furthermore, the why challenge looks at

increasing our knowledge of the broader exploratory insights that are desired. Fur-

ther to Chapter 4, we analyze additional contextual information captured during

our study to explore these dimensions. We find six insight categories to which our

collected queries exist within. Compared with previous work, we highlight one en-

tirely new Preemptive and Proactive insight category, as well as expanded Current
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Status/Value and Contextual insight categories.

1.1.4 How

How can we expand the expressivity of data exploration on the smartwatch,

through both multi-modal input and output modalities, within the confines of the

smartwatch’s capabilities and data exploration needs?

With a concrete understanding of what personal health data queries are desired,

we then focus on how to allow for such exploration. Importantly exploration must

remain lightweight and transient to support databiting on the smartwatch. Given

the limited screen size and input capabilities of smartwatches, designing an intu-

itive and efficient user interface is key. As such, this research challenge focuses on

how to support both both input and output modalities.

Through analysis of the personal health data queries collected, how can we pro-

cess the components within a query to efficiently handle naturally spoken queries

on the smartwatch?

Without the screen real estate for menus, toggles, sliders, etc., touch interac-

tions can be difficult and limited on a smartwatch [61]. Speech, on the other hand,

allows for the conveyance of more complex queries, a low barrier in expressing

intent, flexibility in phrasing and querying [8, 42, 182, 184], and does not require

as much screen real estate. Through the use of speech and touch, benefits of both

can be utilized to enhance smartwatch data exploration. As touch is an already

established input modality, we focus our work in Chapter 5 on examining how the

previously collected queries are phrased. We analyze the components of speech

within the queries, including interrogatives, data sources, aggregations, and fil-

tering mechanisms. By understanding these elements, we aim to later develop a

part-of-speech tagging framework for processing and responding to such queries

directly on the smartwatch.

How should voice assistant answers be structured to support auditory responses

to personal health data queries?
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Output modalities are equally important towards enabling databiting on the

smartwatch. While research exists on micro and glanceable smartwatch visualiza-

tions [3, 13, 15, 26, 68, 85, 86, 135, 136], Chapter 6 focuses on exploring auditory

responses to personal health data questions. Previous work with voice assistants for

question and answering focuses only on general knowledge queries (e.g., ”What is

the weather today?”) [2, 71, 127]. By exploring voiced responses for personal

health data queries, we aim to offer an output modality that leverages the strengths

of auditory feedback, which can be beneficial in times where the visual system is

overloaded [20, 147], as often seen on-the-go.

Through the use of a custom-built pseudo voice assistant, implemented using

Google’s Web Speech API, Chapter 6 provides an online survey study where par-

ticipants directly interacted with the developed voice assistant. Participants would

ask a guided personal health data question and receive a voiced response in one

of three defined answer structures (minimal, keyword, and full sentence). Re-

sponses were ranked by participants for quality, behaviour, comprehensibility, and

efficiency. Notably, full sentence answers were better perceived across all ranked

metrics. The insights gained from this chapter can be used to further enhance the

databiting experience on smartwatches, ensuring that voiced responses are effec-

tive and appropriate.

1.1.5 Databiting Validation

Finally in Chapter 7, we integrate the knowledge gained in the preceding chap-

ters to build a smartwatch workout application, DataWatch, that supports not only

workout tracking, but also enables databiting. Participants installed DataWatch on

their own smartwatch, using it throughout the week-long study within their day-to-

day lives. We then validate and observe the application’s use, and any subsequent

databiting that takes place. Through the findings of our study, both quantitative

and qualitative, we showcase the concept of databiting as a valid means for data

exploration on the smartwatch, pushing the boundaries of how the smartwatch is

perceived for data exploration. This final step brings together all aspects of the

research conducted throughout this thesis to demonstrate and validate the practical
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feasibility and benefits of databiting on smartwatches for lightweight and transient

personal health data exploration anytime and anywhere.

1.2 Research Scope

The scope of this thesis follows a funnelled approach. In Chapter 3, we in-

troduce the concept of databiting from a broad perspective. We conceptualize

lightweight and transient exploration of any data on any device, while also high-

lighting benefits and challenges present. As the thesis progresses, the focus funnels

towards a more specific context: personal health data on smartwatches. This fo-

cus is motivated by the immediate impact that can be realized through advancing

capabilities of an already mature and widely adopted tool like the smartwatch.

Furthermore, the smartwatch is a device that may have the most to benefit from a

lightweight and transient form of data exploration, due to its immediate access to a

range of personal data being collected, limited screen real estate inhibiting lengthy

exploration, and typical and accessible on-the-go usage.

While Chapter 4, Chapter 5, and Chapter 6 focus on exploration of a wide

range of personal health data, our final chapter, Chapter 7, specifically focuses on

exploration of personal fitness/workout data on the smartwatch. This narrowed fo-

cus is justified by the immediate availability and practicality of fitness data on the

smartwatch compared to any and all types of personal health data (e.g., women’s

health, mood, or nutritional information). Moreover, our elicitation study in Chap-

ter 4 revealed that personal fitness and workout data were the most queried by

participants, highlighting the high level interest in exploring such data.

By starting broad and funnelling inwards, we ensure that knowledge gained can

transcend the immediate context of this thesis and as such apply to various types of

data and devices. Importantly, however, by concluding with a focus on exploration

of personal fitness data on the smartwatch, we create opportunity for our work to

provide immediate impact.
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1.3 Thesis Contributions

This thesis contributes the following high-level contributions, while lower-

level, chapter-specific, contributions are further discussed within each chapter and

where applicable:

C1: An introduction of the term databiting, conceptualized as lightweight and

transient data exploration, that bridges the gap between quick, glanceable

data visualizations and more extensive, detailed data analysis. Further to

providing a conceptualization of databiting, we also discuss potential bene-

fits and highlight future, and necessary, research directions. This foundation

sets the stage for developing more intuitive and effective ways for people

to engage with their personal data, both on smartwatches and other mobile

platforms.

C2: An elicited, and now publicly available, dataset of 205 personal health data

queries desired for exploration on a smartwatch throughout daily life. This

dataset, coupled with a thorough qualitative and quantitative analysis, offers

valuable insights into what personal health data query needs people have,

including when, where and why these queries arise.

C3: Interaction requirements for lightweight and transient exploration of per-

sonal health data on smartwatches. We identify key dimensions of our cap-

tured queries, such as interrogatives, data sources, aggregations, and filter-

ing mechanisms, which are crucial for enhancing input methods, particularly

natural language processing capabilities. Additionally, we gather insights on

user preferences for different output structures from voice assistants, focus-

ing on perceived quality, behavior, comprehensibility, and efficiency. These

findings provide essential guidelines for optimizing both input and output in-

teractions, ensuring that data exploration on smartwatches can be supported

in being lightweight and transient.

C4: Development and validation of DataWatch, an Apple Watch application that

demonstrates the practical implementation of databiting. By integrating

10



multimodal interactions, specifically touch and speech, DataWatch enhances

in-situ exploration of past workout data, demonstrating the feasibility and

user benefits of providing lightweight and transient data exploration capabil-

ities directly on the smartwatch.
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Figure 1.2: Outline of the components of this thesis, and how each interacts.
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Chapter 2

Related Work

Throughout this chapter, we highlight research pertinent to the broader topics

within this thesis. These include personal informatics, wearable computing, gen-

eral smartwatch usage, and smartwatch data exploration. In each chapter to follow,

chapter-specific related work is provided to better situate and justify topics and

methods explored throughout.

2.1 Personal Informatics

Personal informatics (PI), an interdisciplinary field encompassing human-computer

interaction and visualization research, emphasizes the collection, comprehension,

and utilization of personal data [59, 107]. The core principle of PI is that of uti-

lizing data to gain self-knowledge and enhance overall well-being. Lupton [118]

describes this as “practices in which people knowingly and purposely collect in-

formation about themselves, which they then review and consider applying in their

lives.”

The Quantified Self Exploring personal health data to gather insight into one’s

personal health journey has long been a goal of “Quantified Selfers” (QS) [118].

Thanks to the increasing capability and prevalence of mobile and wearable devices,

a broader audience is now experiencing PI. These devices, equipped with advanced

sensors for data collection, empower individuals to track a wide range of health

metrics, from physical activity and sleep patterns to heart rate and stress levels. As

a result of the wider spread adoption of wearables, PI is transitioning from a niche,

QS, interest to now mainstream practice.

While collecting personal data is essential, true value emerges when individu-
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als can explore and interact with their data presented in meaningful ways. Quan-

tified Selfers conduct exploration for various reasons, such as maximizing perfor-

mance [28, 197], reflecting on overall health [10, 28, 36, 40, 107], reinforcing prior

knowledge and understanding [36, 58], viewing trends [28, 58], satisfying simple

curiosity [28, 197], and comparing data [3, 28–30].

These reasons for exploration afford explicit queries which can be further cat-

egorized [3, 28, 29, 57, 98, 107]. These categories include questions about current

status (e.g., “What is my current step count?”), historical data (e.g., “What was my

average daily step count last month?”), goals (e.g., “How many more calories do

I need to burn to reach my daily goal?”), discrepancies (e.g., “Did I exercise as

much this week as I expected to?”), context (e.g., “How has the time of my walk

affected my pace?”), and factors (e.g., “Has losing weight and getting more sleep

been helping my mood?”).

Modelling Personal Informatics Research has modeled the lived personal infor-

matics journeys that people take when exploring their collected data for the variety

of reasons above. Li et al. [107] first proposed a model to help understand how

people use personal informatics tools. This model comprises of five stages, which

include preparation, collection, integration, reflection, and action. The main out-

come of this model is actionable insight that allows a person to create positive

behaviour change from their reflection of the collected data. This model has been

iterated upon many times. In fact, one year later, Li et al. [108] further divided the

reflection stage into maintenance and discovery stages to better highlight the types

of reflection that can be done.

Other researchers have further iterated upon this model. As the above model

only highlights reflection as a separate and subsequent action to collection, Choe

et al. [28] discuss how reflection is not always a separate stage, and often occurs in

tandem with the data collection itself; this is especially true when using modern fit-

ness trackers and smartwatches. Finally, Epstein et al. [59] further added deciding

to track and selection of a tracking tool to the beginning of Li et al.’s model, while

also adding lapsing and resuming to the end. This highlights the increasingly lived

experiences of people, by suggesting there exists a repeated and looping nature
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Figure 2.1: The lived personal informatics model by Epstein et al. [59] as illus-

trated by Moore et al. [128].

across many of the stages. See Figure 2.1 for a visual representation of this model.

Interestingly, these stages have not been equally studied [60]; of importance to

this thesis is the integration stage, which is one of the more understudied. In-

tegration involves preparing for reflection by combining and transforming data

[107, 128] and is one of the more complex stages to facilitate. This complexity

arises from the uniquely varied and large number of data exploration needs re-

quired, and the difficulty in providing tools that afford such potential exploration.

Research has attempted to curb this complexity through narrowed design spaces

and algorithms that detect a greater number of insights [91, 92]. However, these

solutions are often fixed and do not involve user interaction and/or control which

can have further negative effects [10, 92]. It is crucial that we develop more dy-

namic and user-centered integration tools. These tools should enable individuals

to generate unique insights through data transformation across tracking and ac-

tion stages, providing greater reflection and actionable insights beyond predefined

metrics.

2.2 Wearable Computing

Thad Starner [185] defined wearable computers as “any body-worn computer

that is designed to provide useful services while the user is performing other tasks.”
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Today, examples of wearable computers include smartwatches, smartrings, chest

strap sensors, smart soles for shoes, body-worn inertial measurement units, smart

glasses, and brain-computer interfaces [166]. As of March 2024, wearable sales

were up 10.5% from that of the previous year, largely driven by the sale of new

smart glasses, and sales are projected to continue to grow at around 4% per year

up to around 650 million units sold in 2028 [112]. As it stands, one of the main

services offered by wearables is to ubiquitously capture and track personal health

metrics from the wearer [34, 69], which can then be later explored to support per-

sonal informatics and healthier living. These fitness metrics, and algorithms as-

sociated with their use, often track physical activity information (i.e., step count,

distance, pace, time, cadence, etc.), sleep quality (i.e., hours slept, sleep rhythm,

etc.), caloric burn, heart rate, energy expenditure, and oxygen saturation [43, 170].

Attributes of Wearables It is important to note that wearable computers offer

different and adapted services from that of typical desktop computers and other mo-

bile technologies (e.g., smartphone or tablet). With this in mind, the goal should

not be to replace these traditional devices; rather, we can complement them by

leveraging attributes that are unique to a wearable device. From a wearer’s per-

spective, Steve Mann described six key attributes of wearable computing that make

wearables, and their services, unique to that of other devices [123]:

1. Nonrestrictive to the wearer: Wearable devices should not impede the wearer’s

ability to physically perform other tasks. The physical miniaturization of

sensors and hardware in today’s wearable and on-body devices, has greatly

allowed for for unrestricted use to become a reality [170]. Particularly, the

compact size of smartwatches, and wrist-worn location, ensures they do not

physically hinder daily activities, making them great devices to have on us

at all times. Importantly, this is achieved while still offering a wide range

of sensors, robust processing power, network connectivity, and various inter-

action modalities (i.e., visual, auditory, and haptic output as well as touch,

speech, and gesture input). Together, this makes the smartwatch more ver-

satile than many other wearables, such as a chest-worn heart rate monitor,
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which may require to be even smaller than the smartwatch or worn in a less

accessible location.

2. Non-monopolizing the wearer’s attention: Wearable devices, and their ser-

vices, should be designed under the assumption that computing will be a

secondary activity, not the primary focus of attention. For example, tasks

such as hiking, jogging, working, or walking to and from locations should

remain the primary activity and focus, while interaction with a wearable such

as the smartwatch is second [14]. In fact, not monopolizing interaction is im-

perative. If interaction with a wearable, or any mobile device for that matter,

requires too much attention and focus during a primary task, then peoples’

interaction performance will decrease [164], they will miss elements within

their surroundings [82], and will change aspects of their primary activity,

such as how they walk [44]. Consequently, any interaction with the wear-

able device during these times must be quick and lightweight such as to not

distract from the primary task at hand.

3. Observable by the wearer: The output medium of a wearable device should

be constantly perceptible to the wearer. Many wearables offer haptic feed-

back to convey pertinent information [9, 81, 147]. Smartwatches, afforded

by the inclusion of a screen, also offer visual feedback to allow observation.

However, to truly support non-monopolized interaction, it is crucial to pro-

vide alternative feedback options for when the visual system is overloaded

[19]. In such cases, auditory or natural language output can be an effective

means to allow the wearer to receive observable feedback without needing

to visually engage with the wearable [151].

4. Controllable by the user: Wearers should be able to take control of the de-

vice whenever they wish. The smartwatch is wrist-worn making it easily

accessible. This body-worn location makes it a perfect device for user input

and engagement in many daily scenarios of use [68, 148]. In fact in certain

daily scenarios, such as at the gym, use of the smartwatch can eclipse that

of other devices such as the smartphone [34]. This access and convenience
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allows users to interact with their device on the go, whether they are working

out, commuting, or undertaking other activities. Importantly, however, inter-

action with the smartwatch often comes at the cost of monopolization (as

seen in the second attribute above). This need to support control even dur-

ing differing usage scenarios is the reason that some research has explored

using the smartwatch during eyes-free, walking, and encumbered conditions

[137, 155, 176, 199, 200].

5. Attentive to the environment: Wearable devices should provide situational

awareness to the wearer. As the use of wearables goes beyond a traditional

desktop setting as is used throughout a person’s daily life [125, 148], the

smartwatch and its sensors have the potential to recognize these varied usage

scenarios and even the wearer’s bodily information, incorporating gathered

information when and where necessary. For instance, a smartwatch can de-

tect when a user is exercising and adjust its display to show relevant fitness

metrics [86].

6. Communicative to others: These devices should function as communication

mediums when desired by the wearer. More so than other wearables on the

market, one of the main uses of the smartwatch is as a communication device

[148, 192], providing quick access to notifications and networking capability

to allow messaging and other communication. Traditionally, interaction with

the smartwatch, such as for communication, has been a challenge due to the

small screen size [134]. For this reason, many research works have explored

adding varied on- and around-device input capabilities [25, 66, 79, 199].

However, many of these works often do not take into account commodity

smartwatch capabilities and common interaction modalities, such as gen-

eral touch interactions and the now powerful natural language processing

which underlies speech input. Furthermore, many gestural techniques ex-

plored can be tiring and slow [4], while some touch techniques often invoke a

large number of pre-touch efforts (i.e., lifting and moving your finger to con-

duct repeated interactions) which should aim to be kept to a minimum [176].

Leveraging simple commodity interactions can provide efficient and effec-
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tive communication capabilities, allowing intuitive interactions for users to

communicate with one another, or perhaps even with a system when explor-

ing data.

2.3 General Smartwatch Usage

Smartwatches are one of the most wide-spread of any wearable currently on the

market [168]. It is estimated that in the next four years, until 2028, the smartwatch

market will continue to grow about 5.4% from current sales, to reach roughly 230

million units sold worldwide [49]. As smartwatches already offer maturity, con-

venience, and widespread adoption, this thesis focuses on pushing the boundaries

and capabilities of the smartwatch over that of other wearables which offer less

potential for interaction with collected health data. In the following paragraphs,

we discuss reasons for smartwatch use, general usage details, and long-term usage

trends.

Reasons for Adoption and Use People adopt smartwatches for a variety of rea-

sons, including performance expectancy, which is the belief that the smartwatch

will enhance their performance [32]. Perceived usefulness also plays a crucial role,

as people expect the smartwatch to help them achieve their goals [126]. Addition-

ally, the compatibility of smartwatches with other devices and services encourages

adoption [32]. Lastly, aesthetics are an important factor, as the design and appear-

ance of smartwatches contribute to their attractiveness, especially as they are worn

on the body [32].

Subsequently, once adopted, research in recent years has abundantly explored

the reasons for use of both smartwatches and fitness trackers [34, 69, 88, 111,

125, 148, 165, 192, 193, 203]. These works, spanning six years from early adop-

tion to current trends, found that smartwatches are generally used for time check-

ing, notifications, activity tracking, communication, information management (i.e.,

weather, stocks, etc.) payment transactions, and navigation.

Increased smartwatch adoption has largely been driven by the smartwatch’s

perceived capacity for health data collection and usefulness in promoting health
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and well-being [52, 174]. Not only can the smartwatch track general activity

metrics, something for which proximity to the body is a key factor [130], but

they also have the potential to aid in detecting COVID-19 symptoms and provide

constant health monitoring, making them valuable for individuals of all ages, in-

cluding those with dementia, depression, and high-stress [113, 206]. Now, smart-

watches are expected to soon offer further sophisticated health monitoring features

from those mentioned above [74, 89, 93, 99, 186], including broader well-being,

stress management, breathing detection, and medication/diet tracking. This holis-

tic health tracking primes the smartwatch for a lead role with respect to not only

personal health data collection but also immediate access to the data, for greater

usefulness and performance expectancy, by allowing for increased and in-situ in-

sights.

Usage Metrics Interactions with smartwatches are typically brief, with most

lasting less than 5 seconds [148, 192], with average of only 1.9 seconds [148].

Activity-related interactions tend to be slightly longer, ranging from 5 to 10 sec-

onds and averaging up to 18 seconds [103, 148, 192]. However, applications such

as maps and messaging can greatly extend interaction times, reaching up to 45

seconds [148], suggesting a natural maximum length for individual smartwatch in-

teractions. Visuri et al. [192] categorize these interactions into two types: peeking

or glancing at the screen, which accounts for about 65% of interactions, and more

engaged interactions, which make up the remaining 35%. They also note that the

majority of interactions, 82%, are initiated intentionally by the user, with notifica-

tions prompting the remaining 18%. This active and intentional interaction with the

smartwatch bodes well for its further integration into daily life, as it demonstrates

peoples’ willingness to engage with the smartwatch for various purposes beyond

just passive notifications. Such engagement underscores the versatility and util-

ity of smartwatches, highlighting their role not only as convenient tools for quick

glances but also as intentional parts of a larger device ecosystem.

Smartwatch interactions, whether quick glances or more engaged actions, oc-

cur in various locations and during many daily activities, such as walking to and

from destinations, commuting, working out, or performing tasks at work [148,
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192]. The broad range of usage scenarios and the convenience of a wrist-worn

device provide significant advantages over even the smartphone, as smartwatches

offer quick and easy access to information. This is particularly beneficial during

activities where using a smartphone might be cumbersome or impractical (e.g., dur-

ing a hike or walking to the transit station). Notably, during activity tracking, Chun

et al. [34] have found that interactions with the smartwatch in fact surpass those

with a smartphone, emphasizing the smartwatch’s ease of use and accessibility dur-

ing in-situ activities. With this greater integration into daily life, it is important that

we provide people as much access to the information that they desire, anytime and

anywhere.

Long-Term Usage Trends Interestingly, usage typically declines over time for

both activity trackers [38, 41, 70] and smartwatches [131, 142, 173]. This decline

in use is often attributed to a mismatch between user expectations/goals and the

actual offerings of the smartwatch [38, 41, 70, 142]. Users may start with spe-

cific goals in mind, such as improving overall health and fitness, but then find

that the smartwatch does not adequately support these goals through captured

metrics, accuracy of metrics, potential for exploration, and expected functional-

ity [70, 142, 144]. This limited functionality can lead to overall dissatisfaction,

causing users to gradually abandon the smartwatch [131]. Externally, people may

even stop using their smartwatch due to a lack of motivation and/or life factors that

that can interrupt/de-prioritize data tracking [7].

Research has identified several factors, however, that can motivate continued

use of smartwatches. One key factor is perceived usefulness through utilitarian

aspects (i.e., tracking quality), where people find value in the tracked data that is

collected [33, 78, 142, 173]. However, hedonic aspects (i.e., fun and pleasurable

aspects) are also important as they positively contribute to enjoyment and self-

expression which in turn increases satisfaction and then continuation of use [31, 78,

173]. Afforded customization and personalization, through utilitarian and hedonic

aspects further improve perceived value which in turn factors into continuation of

use [117]. Finally, the convenience characteristics of smartwatches, such as their

wrist-worn accessibility, ease of use, and quick access to needed information all
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play a significant role in maintaining continued use [142].

2.4 The Smartwatch and Personal Data Exploration

User Needs and Exploration Goals Research has shown that people have di-

verse informatics needs and motivations specific to health data exploration on

the smartwatch. Common reasons for using the smartwatch as a personal health

tool include high-level understanding of activities [58], comparative exploration

[3, 161], accountability and participatory interaction [133, 194], motivation [3],

as well as goal- and performance-based use [3, 6, 22]. Importantly, the reasons

for tracking health data can evolve and change over time [59], further requiring

diversity in the tools provided.

Research has also noted that data exploration is desired not only during an

activity, but also immediately before and after [3, 148]; this reflection, using a

smartwatch, temporally near an activity can be increasingly intertwined with the

activity itself, and thus beneficial to influence real-time and actionable decisions

[3, 69, 107]. In turn, this can further help to set and achieve meaningful personal

health goals. For instance, individuals might want to adjust their activity levels

based on their daily step count or improve on their sleep quality and length by

analyzing sleep data immediately after waking up.

Data Exploration on Smartwatches: Challenges and Opportunities One of

the current challenges in achieving the above mentioned desired exploration, is

that current smartwatches standardize visualizations and displayed metrics, and

thus a person’s underlying needs and goals [180]. Simply put, people with similar

smartwatches and operating systems are presented with identical visualizations and

metrics (albeit with their own numeric values). Given the diverse and highly unique

nature of personal health data exploration, it is essential to develop tools that allow

for unique and personalized exploration and understanding of the tracked data.

Of the metrics that are displayed, Spiel et al. [180] highlight that while smart-

watches and other fitness trackers are designed to capture quantitative metrics, they

often overlook the qualitative experiences, understanding, and reflection associated
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with these metrics. This disconnect forces users to translate qualitative goals, such

as losing weight, into simple quantitative metrics, like increasing daily step counts

[138], without reflecting deeper.

From the user’s perspective, it remains difficult to find mobile health applica-

tions that suit their needs and health goals [161], with people citing a lack of infor-

mation richness and overall usefulness regarding their smartwatch health applica-

tions [145]. Neshati et al. [134] note that smartwatch users are seeking answers to

their personal health data queries that are simply not available to them; these types

of desired queries are exemplified as ”how am I doing so far?” or ”how am I doing

compared to my friend, Jane?” [108], and are not currently supported within a time

frame that supports common smartwatch use. These missing features, underscored

by our limited knowledge of concretely reported queries, hamper full engagement

and a broader range of benefits [70].

While a growing body of research revolves around smartwatches and wearable

activity trackers, only about 10% of such research is centered around the collected

data and the ability to convey appropriate meaning and function [171]; other re-

search focuses on topics such as privacy, acceptance, adoption, and abandonment,

behaviour change, and hardware. Of the works that do focus on data exploration,

they often highlight the technical complexities of visually rich personal health data

represented on a small smartwatch screen which creates an exploration environ-

ment with limited usability, customization, and interaction [34].

Much of the limited exploratory capability on the smartwatch stems from the

small screen of a smartwatch which presents several challenges, including screen

occlusion and fat finger issues [172] during interaction. The limited screen size

constraints not only inhibit interaction but also visualization options, making it

difficult to display comprehensive data trends and comparisons over time [3, 134].

While displaying data alone is a challenge, further providing filtering options, tog-

gles, etc. can be cumbersome to navigate through potentially involving extensive

screens, or lists of options. These challenges importantly present opportunities

for innovative interfaces and visualizations tailored specifically for smartwatches.

As data collection becomes more advanced, and the smartwatch further matures,

there is a growing need for creative solutions that not only condense complex in-
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formation into digestible, easy-to-understand formats, but also enhance exploration

potential, enabling users to gain unique and personal insights with minimal inter-

action.

Interaction Techniques for Smartwatch Data Exploration While many re-

search works have broadly explored how to expand interaction capabilities on the

smartwatch that mitigate the small screen challenges the [1, 48, 95, 137, 141, 155,

162, 181, 204] (only a select few of the many research works), very few focus these

interactions for use in data exploration. To note, some work has been explored

which utilizes the smartwatch as an input tool within a multi-device exploration

environment (i.e., in conjunction with a large wall display) [80, 201]. However,

these works do not involve exploration directly on the smartwatch screen.

To our knowledge, Neshati et al. [137] is the only work that directly focuses on

creating an input technique for interacting with charts on the smartwatch screen.

Their approach successfully utilized a portion of the bezel around the screen to

reduce fat-finger and screen occlusion issues, allowing users to accurately target

individual data points within a displayed chart. However, this input technique has

its limitations, as it primarily enables users to view individual values for specific

data points of a chart already on screen, lacking the uniqueness and functionality

needed for expanded interaction and even deeper exploration.

Visualization Techniques for Smartwatch Data Exploration Practitioners, de-

signers, and researchers all acknowledge the need to adequately represent self-

tracking data on the smartwatch, especially given the typical short interaction times

and their small screen sizes. Currently, various visualization techniques are used

on commodity smartwatches to reflect complex health data, including bar, donut,

radial bar, and line charts [13, 136], as well as text, icons, and pictograms [84].

Each has its pros and cons. Bar charts are widely used and easy to understand

but can be space-inefficient. Donut charts are common but not always effective at

presenting proportions. Radial bar charts are not efficient for comparing more than

a few data points. Line charts provide clear representations of time-series data but

can become cluttered if too many data points are displayed.
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Regardless of the visualization method chosen, however, ensuring glanceabil-

ity is paramount for effective data representation on smartwatches. To be truly

effective on a smartwatch, visualizations must be glanceable—they should convey

essential information within five seconds or less [14, 68]. This quick comprehen-

sion is key given the brief nature of smartwatch interactions.

To this effect, case studies of smartwatch visualizations have been conducted,

to first better understand people’s perceptions and ability to perform common data

analytic tasks through visualization on the smartwatch. These include to under-

stand glanceability [13] and visual parameters that make up the visualizations

[85, 120]. Blascheck et al. [13] pinpoint this problem by investigating percep-

tions and efficiencies of bar, donut, and radial bar charts for a common two-point

data comparison task. They find that 24 data points represented as a bar or donut

chart allowed for quick and efficient comparison. Furthermore, Islam et al. [85]

studied a variety of sleep data visualization designs to elicit the most preferred and

suggest design guidelines for differing form factors.

Other visualizations techniques have been explored to push the boundaries of

the current techniques used. Amini et al. [3] proposed, through both user study

and designer sessions, a variety of visualization ideas each which target a data

exploration need that people had on the smartwatch. Visualizations proposed in-

cluded simple text and numbers, standard charts, and icons and symbols. For more

involved data analysis on the smartwatch, and recognizing that many data points

could be involved, Neshati et al. [135, 136] and Tufte [189] proposed compression

of line graphs, often called sparklines. These charts were shown to not only retain

salient features necessary, but also remain to allow for the performing of common

analytic tasks (i.e., trend detection, max/min detection, and value comparison).

Summary While these works are crucial for supporting glanceable exploration

of collected data on smartwatches, and positing interaction capabilities for specific

data analysis, our work in this thesis recognizes an opportunity for a complemen-

tary approach. Although the average interaction time with a smartwatch is 1.9 sec-

onds and often under 5 seconds, usage time increases significantly during physical

activity, averaging 18 seconds, and reaches up to 45 seconds for other interactions
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[148]. We believe that, given the diverse exploration goals of smartwatch users,

personal health data needs, and perceived advantages of exploration directly on the

smartwatch while in-situ, we can and should enhance the exploratory capabilities

of smartwatches. By extending, and complementing current solutions to allow for

more personalized exploration directly on the smartwatch, we can remain within

the typical bounds of smartwatch interaction. This approach can provide users with

deeper insights anytime and anywhere, enhancing the utility and impact of health

data collection and exploration directly on the smartwatch.
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Chapter 3

Databiting: Lightweight,
Transient, and Insight Rich
Exploration of Personal Data

We first conceptualize a form of data exploration that serves as a

lightweight and transient bridge between short- and long-form explo-

ration; something we recognize and strive for throughout the follow-

ing chapters. Conceptualizing, rather than providing a strict defini-

tion, acknowledges the fluid boundaries of various data exploration

uses and user needs. This chapter resulted in a publication in Com-

puter Graphics and Applications as a Visualization Viewpoint [158].

The article was a collaborative effort among myself, Bongshin Lee,

Eun Kyoung Choe, and Pourang Irani. The collaboration took shape

through countless meetings focused on concept creation and devel-

opment, as well as editorial work. Any mention of ‘we/our’ in this

chapter refers to my co-authors.

As device hardware and software advance, enabling broader access to personal

data, new opportunities for data exploration arise: data exploration has the poten-

tial to intertwine with our lived experiences and day-to-day activities. However,

conducting data exploration in many scenarios of use poses unique challenges. It

is crucial that exploration does not hinder, but rather assists, a wide range of scenar-

ios and contexts in which we find ourselves seeking insight [106]. In this chapter,
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we advocate for the visualization and personal informatics research communities

to focus on the development of lightweight and transient exploration techniques

that remain to enable insight rich access to personal data.

Current systems offer one of two approaches to personal data exploration.

Glanceable and micro visualizations have been widely adopted in mobile appli-

cations [3, 13, 15, 26, 68, 85, 135, 136], at times combined into dashboards (Fig-

ure 3.1 left). They provide concise and focused representations of information in a

limited space and context for users to easily grasp information at a glance. How-

ever, despite their popularity and necessity, they offer only specific insights and

allow limited interaction, leaving users without the ability to cater to their personal

and situational needs. In contrast, heavyweight applications (e.g., Tableau, Excel,

custom script writing) have been designed to enable longer-form and more com-

prehensive data exploration (Figure 3.1 right). These applications often require

considerable time and knowledge to use. These barriers make them at times in-

accessible or inconvenient (e.g., during physical activity, while walking a pet, or

while cooking). Between these approaches, a significant gap in the field of per-

sonal informatics and visualization arises: limited information richness hinders

users’ ability to better comprehend and leverage personal data through exploration

that can be efficiently undertaken during broader contexts.

Within this chapter, we conceptualize and discuss the notion of databiting,

a term we coined to indicate lightweight, transient, and insight rich exploration.

We further delineate five research considerations—contextual factors, interaction

modalities, the complementary relationship between databiting and other forms of

exploration, personalization, and evaluation challenges—focused towards enabling

and understanding databiting. Importantly, these research areas can work in con-

cert to provide lightweight and transient access to richer personal insight anytime

and anywhere. By embracing ideas and approaches outlined in this article, we can

empower individuals to effortlessly gain insights from their data as needed, trans-

forming the way they explore and interact with their personal data. Together, this

recognizes the importance of our interactions with personal data and emphasizes

the significance of seamlessly integrating rich personal insights into our daily lives.

As such, the key contributions of this chapter are two-fold:
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Figure 3.1: Representations of current mobile data exploration applications are

highlighted, grouped by general information richness: applications which afford

glanceable and micro-visualizations (at times combined into dashboards) (top) and

applications which provide potential for heavyweight data analysis (bottom).
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C1: An introduction to the term databiting, conceptualized as lightweight

and transient data exploration, that bridges the gap between glanceable

and longer-form data exploration. We provide a conceptualization of

databiting, highlight its unique characteristics, and discuss potential

benefits.

C2: A delineation of open research challenges and goals for the re-

search community to pursue in enabling databiting. Specifically, we

discuss contextual factors, interaction modalities, the relationship be-

tween complementary forms of data exploration, personalization and

customization, as well as evaluation challenges.

3.1 The Databiting Concept

We conceptualize databiting as the act of interacting with data to gain increas-

ingly rich insight through lightweight and transient exploration. The result is a

databite, concise personal insight that extends upon what can be derived from

glanceable or micro visualizations. Databiting as both a new concept and a topic

for research is fluid in nature: Boundaries defining insight and data exploration

methods allowing for such insight are not rigidly defined or fixed.

To illustrate this concept, we draw upon analogy. Databiting can be seen as

equivalent to eating a small and easily consumable snack. The size of a snack and

the number of bites required may vary from person to person and from context

to context. Yet, what remains constant is the lightweight and transient nature of

snacking compared to consuming a meal (often a reasonably large amount of food).

In the context of data exploration, databiting equates to the consumption of bite-

sized information that provides rich insights or sustenance in the moment. This

builds upon simply viewing a mobile data visualization and does not require more

in-depth and long-form data exploration, which can be done later when necessary

or more appropriate.

Importantly, databiting is not meant to replace either long-form exploration of

data or shorter-form viewing of glanceable visualizations; rather, it is complemen-
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tary to them. By bridging the gap between these two forms of exploration, databit-

ing offers a new, complementary, form of exploration that pushes the boundaries of

what is currently attainable. This integration of exploration methods can foster a

more comprehensive, valuable, and unique (i.e., richer) understanding of personal

data, yet remain accessible in a lightweight and transient manner. By offering a

range of exploration options, across devices and throughout a range of usage sce-

narios, we expect individuals can derive greater benefits from their data-driven

insights anytime and anywhere.

3.1.1 Lightweight, Transient, and Insight Rich Exploration

Time and effort, which should remain small, are key factors in the context of

databiting. Glanceable and micro visualizations excel at providing quick and easy

data engagement, however, remain limited in their level of insight conveyed.

We envision that there remains a large opportunity to enable access to more

information rich insights while maintaining a lightweight and transient approach,

see Figure 3.2. Consider a scenario in which a runner is stopped at a traffic light,

waiting to cross the street. The primary task is their run and the focus on the

surrounding environment. Secondary to this, they look at their heart rate zone data.

Seeking a databite they simply tap on a stacked bar chart which highlights their

current heart rate zone. This action reveals increasingly detailed insight into the

time spent in each heart rate zone, enabling the runner to concentrate on entering

or maintaining a specific zone as they proceed with their run. Notably, this is not

functionality that is currently available.

As can be seen, databiting can offer richer insight without requiring substantial

effort, engagement, or time. This allows data exploration to occur as a secondary

task, alongside a primary ongoing activity (e.g., while out for a walk) or during

a recurring daily activity (e.g., riding a bus home). Through the prioritization of

simplicity rather than detail and complex insight, the small size of databites ensures

that they can be easily and appropriately consumed.
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Figure 3.2: In blue (bottom left), we highlight glanceable and micro visualizations

for data exploration. In green (top right), we highlight heavyweight data explo-

ration and analysis. In pink (middle), databiting, as a concept, promotes the need

for increasing information richness while exploration remains lightweight and tran-

sient. We encourage the reader to envision how visual data exploration can con-

sume this area of the graph. We present these rectangles as sketched illustrations to

signify the fuzzy boundaries of these forms of exploration and potential variance

within them.
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3.1.2 Device Agnostic Exploration

Due to their highly portable nature, the immediate availability of data being

collected, and the smaller form factors limiting heavier exploration, databiting is

particularly well-suited for smartwatches and other wearable devices. However,

the emphasis of databiting is not on the specific device used or insights gained

but is in the manner in which data is accessed. As such, databiting can be seen

as device agnostic and can be done on any device that grants access to relevant

data, ranging from wearables, smartphones, and tablets, to laptops. For instance,

before switching to a different task on a laptop, a researcher first quickly checks the

current screen-time information. With simple mouse interactions, they learn about

a negative trend that results from increasing the duration of one continuous work

block and thus decide to take regular breaks, starting with an immediate break.

Similarly, a tablet user exploring their financial data while in transit could use the

stylus to circle a transaction and draw a line to another to view how they are related.

Taking the interaction a step further, the user could employ pre-defined gestures to

accomplish further exploration (e.g., displaying a transaction timeline or finding

similar transactions).

3.1.3 Data Agnostic Exploration

The versatility of databiting extends beyond that of personal data, making it

applicable to a wide range of domains and contexts involving data exploration.

While the initial conceptualization revolves around personal data for individual

insights, the fundamental principles of lightweight, transient, and insight rich ex-

ploration can be seamlessly applied to various data categories. For instance, in

the business context, professionals can benefit from quick insights (e.g., during a

meeting). Databiting can enable easy access to necessary insights to foster discus-

sions and inform decision-making without the need for extensive data preparation

or analysis. In the context of scientific research, researchers running a study can

use databiting to garner quick insights about the amount and quality of collected

data. This can help them decide to continue or stop and refine, if needed.
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3.2 Expected Benefits of Databiting

We discuss the envisioned potential benefits of databiting that are not fully

realized with the current capabilities of mobile data exploration. Further study is

needed to identify and demonstrate any tangible benefits that may exist.

3.2.1 Introductory and Intermediary Access

As highlighted earlier, databiting has the potential to bridge the gap between

brief information access (short-form exploration) and comprehensive knowledge

gain (long-form exploration). Offering lightweight, transient, and insight rich ac-

cess to personal data allows for engagement with smaller bite-sized snippets of

timely information. This approach provides an accessible entry point for individu-

als new to data exploration to begin to explore and understand their data.

Furthermore, a bite-sized approach to exploring data can serve as an interme-

diary step, providing individuals with a gateway for more in-depth data exploration

at a later time. By offering exploration in easily consumed pieces, databiting can

spark further interest, familiarity, and excitement. When presented with quick and

accessible personal insights, individuals may become more curious and motivated

to further explore their data. Over time, this increased engagement may foster a

greater sense of familiarity and confidence with data; ultimately facilitating further

exploration and a deeper understanding.

3.2.2 Increased In-Situ Insight

Due to the lightweight, transient, and insight rich nature, we anticipate databit-

ing will be beneficial for obtaining data-driven insights during in-situ exploration.

In-situ instances of exploration refer to moments in which data analysis and re-

flection occur closely related to an ongoing activity, enabling immediate and direct

impact [108]. Databiting can extend in-situ data access, currently offered through

glanceable and micro visualizations, by providing further information richness.

This leads to potentially increased actionable insights that are directly relevant to

the ongoing activity. Whether it is using a smartphone to explore caloric intake for
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the day while cooking, asking a smart speaker about your home energy consump-

tion for the day as you arrive from work, or checking productivity on your laptop

while studying, databiting can empower individuals to gain valuable, personalized

insights that inform immediate decision-making.

3.2.3 Perceived Usefulness

A current challenge concerning devices and applications that allow for per-

sonal data access and exploration is a lack of perceived usefulness [131]. Current

offerings often fail to meet expectations, resulting in the abandonment of devices,

applications, and even the collection of data altogether [38]. While addressing per-

ceived usefulness is a multifaceted challenge, databiting can serve as a promising

start. Increased information richness and personalized insights enabled by databit-

ing have the potential to enhance the perceived usefulness of the devices and appli-

cations used for databiting, and the value derived from collected data. In turn, this

could lead to greater overall outcomes as the collection and exploration of personal

data are not outright abandoned.

3.3 Research Considerations

In this section, we discuss how we can begin to enable databiting through re-

search, to achieve increased access to personal data anytime and anywhere. Specif-

ically, we discuss research considerations that aim to overcome existing challenges

and benefit from promising opportunities.

3.3.1 Contextual and Attentional Factors

Contextual factors can become increasingly integrated with databiting, shaping

the recognition of potential exploration, the integration of relevant data, and even

output provided to answer a question asked during a databiting instance. Unlike

conventional data exploration, in which context might be analyzed as an additional

factor later on, databiting can be seen to easily integrate context. Imagine a trav-

eler, using a mobile app to explore a new city. Basic on-screen insights might
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reveal location in relation to nearby attractions. However, databiting can leverage

contextual data such as time of day, personal preferences, and current location.

This integration of contextual data can enhance the overall experience and provide

the potential for increasingly relevant in-situ insights. Focusing research on under-

standing and incorporating contextual factors within data exploration can signifi-

cantly impact exploration that is possible. For example, we can study techniques

to incorporate contextual attributes into data visualizations, develop context-aware

recommendation algorithms, and look to gain a better understanding of how con-

text can be incorporated into queries and answers desired for databiting.

Beyond integrating context into the data itself, the situational demands and

underlying contexts of in-situ activities can also influence data exploration ca-

pabilities. Factors such as physical exertion, cognitive load, attentional capacity,

and movement can affect a person’s ability to engage with databiting effectively.

Research into these dimensions can provide valuable and actionable insights for

optimizing databiting to better fit the context of use. For example, leveraging

multi-source data streams [110]—such as sensor data (e.g., heart rate, skin conduc-

tance, accelerometer) combined with self-reported measures of perceived workload

and task difficulty—can help build a comprehensive understanding of an person’s

exploratory capability in real time. Using this contextual information, we could

model expected performance in terms of efficiency and effectiveness, akin to ap-

proaches that have been used to measure arm fatigue during mid-air gestures [77].

3.3.2 Interaction Modalities

Enabling databiting requires considering appropriate interaction modalities that

are not only efficient but also cater to the unique constraints of in-situ scenarios.

This is not straightforward, especially because we aim to increase the level of data

accessibility across devices with potentially limited interaction spaces (e.g., smart-

watches, smartphones, and other wearables).

To facilitate lightweight, transient, and insight rich exploration of personal

data, a multimodal approach through natural language and the device’s primary

interaction method can be used (see Figure 1.1). The primary input modality,often
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touch, allows for direct manipulation, discrete selections, and when natural lan-

guage keywords cannot be remembered [98]. Importantly, natural language (e.g.,

speech) benefits from enabling fast and flexible expression of complex queries [8].

Recent research in personal health applications on smartphones has demonstrated

the benefits of multi-modal touch and speech interactions for gaining insights into

personal health data [98]. Notably, individual and combined interactions were of-

ten used for differing, yet equally important, components of the data exploration

process. Touch and speech combined showed promise for refinement of an initial

query or displayed graph, much like databiting may extend upon glanceable or mi-

cro visualizations. However, a better understanding of individuals’ personal data

query requirements needs to be further addressed to fully recognize the interactive

needs of databiting.

Furthermore, exploring alternative output modalities can complement currently

available data visualizations. Devices such as headphones, earbuds, and home as-

sistants offer opportunities to incorporate natural language responses when databit-

ing. This can appropriately provide access to data when people’s visual systems are

overloaded [19]. There is limited work on the requirements for natural language

responses to personal data queries. Further research can focus on formulating effi-

cient responses, determining the level of conveyed insights, and ensuring the mem-

orability of responses. Integrating these findings with existing data visualization

approaches can optimize access to personal data.

3.3.3 Databiting and Broader Exploration

The nature of databiting invites opportunities to consider a relationship with

further long-form data exploration. Understanding how people can transition from

one to the other and how previous in-depth exploration can inform future databiting

will contribute to a cohesive and personalized data exploration experience. How-

ever, it is crucial to recognize that the seamless transition between databiting and

broader exploration experiences will likely require extensive device and app inter-

operability. Future research is needed to address these technical hurdles.

Databiting can afford a stepping stone for people to delve into in-depth data
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exploration when more appropriate. For example, as seen in Figure 1.1, Sam may

recognize that their pace was improving for a while, until the most recent hike. To

better understand why today’s hike had such a decrease in pace, they can save the

databite such that they are reminded to further explore for an external cause (e.g.,

decreased sleep) at a later time (e.g., while at a desk) and on an appropriate device

(e.g., on a tablet). It becomes important to understand how individuals can save

and manage databites, and any new questions that arise, for future exploration.

Conversely, the results of prior in-depth data exploration have the potential

to influence and enrich future databiting. For example, an individual may have

taken the time to pore through their credit card statements, itemizing transactions

into categories and noting a budget limit for each. When in the store, this past

exploration may influence databiting which is directed towards understanding if a

purchase can and should be made within a predefined category.

These examples further highlight an underlying challenge concerning interop-

erability. Currently, fragmentation and non-standardized access to collected data

hinders cohesive personal data exploration. For instance, data saved on one device

may not seamlessly integrate with a user’s preferred in-depth exploration tool on

another device (e.g., to analyze collected data from an Apple Watch in Tableau, ex-

porting and importing of data is required). Furthermore, data collected on multiple

devices may be stored using different protocols and formats. Without a concerted

focus on interoperability, the potential for databiting to seamlessly complement

broader exploration methods, and vice versa, may be hampered, limiting overall

effectiveness.

3.3.4 Personalization and Customization

Personalization: Studying and supporting personalization is a key aspect when

looking to optimize databiting and enhancing the exploration process. By tailoring

insights, recommendations, and visualizations to individuals, and their contexts of

use, personalization ensures that relevant information is efficiently presented. This

reduces the required time and effort, enabling people to quickly access valuable

insights and make informed decisions.
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Through personalized databiting, technology mediation (i.e., artificial intelli-

gence, machine learning, etc.) can alleviate individuals from manual data analysis.

For example, a personalized databite may provide instant workout recommenda-

tions or in-situ alerts to metrics trending in a specific direction. A potential reduc-

tion in temporal workload allows people to focus on the actionable outcomes of

databiting rather than the exploratory process. Furthermore, serendipitous discov-

ery is a benefit of visual data exploration. Personalization can be used to mediate

tailored serendipitous insight, even with lightweight and transient exploration.

When developing personalized systems that provide increased insights with

minimal interaction, both technical and experiential research questions arise. How

can user behavior and preferences be accurately captured and utilized for person-

alization in databiting? It is crucial to ensure that notifications and information

provided align with internal models and desires, as undesired interactions can nega-

tively impact the user experience. This further leads to the question of how person-

alization impacts user engagement and satisfaction with databiting. Understanding

and building around a person’s individual preferences is fundamental to delivering

effective personalized insights.

Furthermore, identifying the most relevant data and patterns for providing mean-

ingful and timely personalized insights is essential. This further aligns with under-

standing the contexts of use. For example, a system must determine which data

points are most valuable to the user at any given time and adapt to changing con-

texts and preferences. Algorithms that support personalization must consider a vast

amount of information, including user behavior and past interactions, preferences,

historical data, contextual factors, and more. Specifically, we need to understand

which types of data and patterns are most relevant for providing meaningful and

timely insights. By addressing these questions, our future goal will be to develop

personalization strategies and algorithms that enhance user experience and make

databiting a more intuitive and efficient process through personalization.

Customization: For those who prefer a higher degree of control, offering cus-

tomization options is a critical aspect of effective databiting. Customization allows

users to take the time to preemptively tailor their data exploration applications to
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their preferences, which can include the creation of custom charts, setting spe-

cific data filters, and adjusting the look and feel of their data exploration interface.

By enabling users to customize these aspects, explicit databiting (i.e., querying of

data) is not necessarily required. Yet, a challenge that remains in this space is how

to effectively provide people the ability to create their own exploration experiences.

To address this, future research should explore several key questions: How

can customization tools be designed to be intuitive and accessible for all users,

regardless of their technical proficiency? What methods can be employed to ensure

that customized settings are easily adjustable as user needs and preferences evolve?

Additionally, how can we support users in discovering and utilizing customization

options to their fullest potential?

One promising solution lies in developing multi-modal systems. By integrating

multiple modes of interaction, users can more effectively tailor their databiting

experiences to fit their unique needs and contexts. This approach not only enhances

the usability of customization features but also ensures that the system remains

adaptable and responsive to the diverse ways in which users interact with their

data.

Spectrum of Personalization and Customization: Finally, to fully realize the

potential of personalization and customization, balancing automated personaliza-

tion with user control is also essential to maintain system intuitiveness and flexibil-

ity. It is unlikely that personalization and customization is a binary choice. Rather,

individuals will likely fall along a spectrum between the two. This balance may

vary between people, and even for an individual person given varying goals and

contexts of use. Research in this space should work to model user preferences that

can align a person along this spectrum. By then adapting a user interface to allow

for the desired level of personalization and customization, we can afford a greater

user experience and efficiency for databiting.
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3.3.5 Evaluation Challenges

To realize the full potential of databiting, two areas of evaluation must be

considered. First, it is essential, yet challenging, to understand an individual’s

needs and goals when interacting with personal data while in-situ. Modest meth-

ods such as sketching or surveys lack real-world data, while heavyweight ap-

proaches through the creation of working mobile applications are costly and time-

consuming. Balancing methods through data engagement interviews and Wizard-

of-Oz studies can help capture needs in various daily contexts, although in-lab

study methods may suffer from recall bias [75].

With the above in mind, accommodating in-situ studies is crucial for a com-

prehensive understanding of databiting. Current methods such as Experience Sam-

pling [39] and Diary Studies [17], while valuable, have limitations in not always

capturing the full range of potential study data. Further developing appropriate re-

search methods within situated environments is required. By capturing real-world

usage and contextual factors, we can gain a more nuanced understanding of how in-

dividuals engage with databites in their everyday lives, further advancing the field

and maximizing potential.

Second, to assess the value of databiting once it has taken place, measuring

effectiveness of the exploration conducted and insight enabled by databiting is im-

portant. Capturing data as closely tied to the databiting experience can be increas-

ingly valid and important to analyze. This further would allow us to understand the

impact of databiting compared to glanceable and micro visualizations, and longer-

form data exploration. Longitudinal studies can capture behavior change over time,

but studying and capturing the immediate influence of databiting is not straightfor-

ward. Given the lightweight and transient nature of databiting, as well as the in-situ

instances of interaction, it is essential to develop methods, tools, and scales that as-

sess the immediate effects of databiting without further distracting users from their

current activities or being compounded as a part of the databiting interaction. En-

suring that evaluation techniques are minimally intrusive will help gather accurate

data on the effectiveness of databiting in real-world scenarios.

Several research questions arise from these challenges: How can immediate
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impacts of databiting be accurately measured in real-time? What minimally intru-

sive evaluation techniques can be developed for in-situ databiting interactions? One

goal with respect to these research questions would be to understand these impacts

without the need to analyze any captured personal health data. Given a variety of

privacy concerns, and the increased difficulty in studying raw personal health data,

creating methods that do not require such data would be important. Finally, along-

side understanding the immediate impact of a databiting interaction, how can we

assess the cognitive and emotional impact of databiting on users? Addressing these

questions will help in developing robust evaluation strategies that capture the im-

mediate and even perhaps the long-term impacts of databiting, ensuring that these

systems are efficient and appropriately designed.

3.4 Summary

In this chapter, we conceptualize databiting as the process of extracting in-

creasingly rich insight through lightweight and transient data exploration. Given

increasingly powerful devices, coupled with the vast collection of personal data,

and in-situ use, this form of exploration has the potential to complement the way

people interact with and understand their personal data throughout their daily lives.

By bridging the gap between glanceable and micro visualizations (short-form ex-

ploration) and heavyweight (long-form) exploration, databiting can provide com-

plementary insight, enabling people to better access their personal data.

We have introduced the concept of databiting, provided examples and expected

benefits, and delineated research considerations that remain to be undertaken. We

envision that this key, yet under-explored, concept of personal informatics may

soon become a reality. This thesis and its later chapters aim to push the bound-

aries of this beginning, making databiting on the smartwatch a complementary part

of personal data exploration. We hope this chapter alone inspires research com-

munities towards the creation of applications and tools that enable databiting. We

anticipate that both exciting challenges and opportunities will arise, which in turn

will shape the future of databiting and access to personal data anytime and any-

where, for the better.
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Chapter 4

Eliciting In-Situ Personal Health
Data Queries on the Smartwatch

With databiting in mind, we must first gain knowledge of what per-

sonal health data queries are even of interest to people throughout

their daily lives. Surprisingly, there is little concrete knowledge about

the specific queries people desire. Only once queries are known, can

we begin to understand and build for them. In this chapter, we now

begin to focus our efforts on the smartwatch as a mature tool that has

the potential to provide and benefit from our envisioned databiting

capability. This chapter resulted in a publication in the journal on

Interactive, Mobile, Wearable, and Ubiquitous Technologies [157].

The article was a collaborative effort among myself, Bongshin Lee,

Eun Kyoung Choe, and Pourang Irani. The collaboration took shape

through combined efforts in ideation, study design and editorial work.

Furthermore, Charles-Olivier Dufresne-Camaro supported efforts in

the data analysis/coding process highlighted throughout this chapter.

Any mention of ‘we/our’ in this chapter refers to my co-authors and

colleague.

4.1 Introduction

Understanding user intentions for personal health data exploration and interac-

tion in-situ on smartwatches remains largely unexplored. A notable study captured
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a dataset of desired queries from smartwatch users [154], providing valuable in-

sights, but relied on a survey, which is prone to recall bias [75]. Current research

on smartwatch personal health data spans two main domains: first, identifying

and addressing the needs of smartwatch users regarding their personal health data

[3, 134]; and second, developing data visualization [3, 13, 26, 68, 135, 136] and

interaction [137] techniques to overcome the limitations posed by the small screen

size of smartwatches. Although these studies offer significant insights, they often

lack a broader empirical understanding of the specific data exploration desires of

smartwatch users.

To understand, and begin to support databiting on the smartwatch, this chapter

first elicits what exploratory queries smartwatch users desire throughout their daily

lives. Additionally, we reflect on why the queries provided were desired. Finally,

we look to better understand any implications of being in-situ (i.e., when/where

data exploration is desired). More specifically, we focus on the following two

research questions:

RQ1: What personal health data queries are of interest to people for

exploration on their smartwatches throughout their daily lives?

RQ2: How does being in-situ influence the desired personal health

data queries of smartwatch users?

To answer these research questions, we conducted a week-long study with

Apple Watch users (N = 18), and concluded with a final interview. Throughout

the week, we elicited a total of 205 desired queries from participants that would

allow them to better explore and have access to their collected personal health

data on their smartwatch. Using a custom built data collection application, par-

ticipants reported responses throughout their daily lives, which included a natural

language query and current activity information. We learned that participants not

only looked to utilize their smartwatch for data exploration temporally surround-

ing a tracked physical activity [3], or in-situ, but also found it beneficial to use

the smartwatch throughout daily activities for immediate and often discrete explo-

ration. Furthermore, with respect to why participants looked to explore data, we
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highlight a new Preemptive and Proactive insight category, and find expanded Cur-

rent Status as well as Contextual insight categories when compared to previous

works [3, 29, 30, 108].

The key contributions of this chapter are twofold:

C1: An empirical study to capture health data queries desired for ex-

ploration on a smartwatch throughout daily life. From this study we

provide a dataset of the 205 natural language queries captured through

our study4.

C2: A thorough analysis of the queries in our captured dataset, to

provide a better understanding of where, when, and why queries are

desired. Combining qualitative insights with quantitative metrics, we

uncover patterns and trends that can inform the design and implemen-

tation of effective databiting on smartwatches.

4.2 Relevant Related Work

4.2.1 In-Situ Data Collection Methods

Typical in-lab data collection methods, such as interviews, surveys, and focus

groups are often subject to recall bias [75]. Thus, ecologically valid methods of

data collection have been utilized in research across domains. These methods in-

clude, Diary study [17, 23, 37, 51, 73, 90, 177] and Experience Sampling Method

(ESM) (or the equivalent Ecological Momentary Assessment) [39, 45, 105, 190].

Both methods often utilize a pre-built survey or questionnaire for participants to re-

spond with, but a notable difference between Diary and ESM studies is the nature

in which data is meant to be captured. ESM studies utilize notifications sent to par-

ticipants, where data capture is intended to be done in immediate succession to the

alert. On the other hand, Diary studies allow for the collection of in-situ self-report

data whenever participants have a response to report. Notifications are then used as

reminder rather than a trigger to submit responses. To further reduce data capture

4https://smartwatch-personal-health-data-queries.github.io/
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burdens, researchers have begun to utilize smartphones and smartwatches for suc-

cessful data collection [76, 99, 202]. The always-available and body-worn nature

of a smartwatch allows for easy access to the data collection tool. Furthermore,

notifications on smartwatches have a high level of awareness from the participant

[24, 148], have shown to allow for higher response rates, and are perceived as being

less distracting during daily life [83, 150].

4.3 User Study

Our in-situ data collection spanned the course of a week, in which we employed

a diary study method. As part of the study, we installed a custom data collection

application on participant’s smartwatches, through which they recorded a desired

personal health data query using natural language (either spoken or written), as well

as additional activity information. Participants provided responses throughout their

daily lives, specifically when they felt it would be beneficial to access such infor-

mation concerning their personal health data directly on their smartwatch. Ethics

for this study was obtained from and approved by our institutional review board.

4.3.1 Participants

We recruited 18 participants (P1–P18; ten females and eight males) from Red-

dit. We advertised our study across subreddits relating to personal health as well

as a number of general city subreddits across Canada. Our inclusion criteria were

those who (1) were aged 18 years or older; (2) own an Apple Watch Series 3 or

newer with watchOS 7 or higher installed, and have a paired iPhone; (3) have ac-

cess to Zoom and a stable internet connection; (4) are native English speakers; (5)

have no motor, visual, or speech impairments; (6) currently collect at least one of

the following personal health data: sleep, nutrition, physical activity, steps, calo-

ries, women’s health, and/or mindfulness data on their Apple Watch; and (7) have

been regularly collecting personal health data on their Apple Watch for at least

three months.
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In appreciation for their time and effort, participants were offered up to $40

CAD. The amount a participant received was not tied to the number of responses,

but rather the number of participation days. We provided the equivalent of $9.50

CAD for attending the introductory session, and another equivalent of $9.50 CAD

for attending the final interview. During the week long data collection, we added

an additional equivalent of $3 CAD for each day for which a participant provided

at least one response. We provided compensation after the final interview, or upon

withdrawal, in the form of an electronic Amazon.ca gift card.

4.3.2 Data Collection Method

To understand what personal health data queries lay users have, researchers

have previously used focus groups, lab based experiments, and questionnaires

[3, 154]. While these methods provide a positive general understanding, we aim

to mitigate the potential for recall bias through concretely reported, in-the-wild,

responses. Within our work, desired responses could arise at any time within a

participant’s daily life. Therefore, we utilized a Diary study method combined

with ESM’s random-interval sampling. We note, both fixed interval-based and

event-triggered collection methods would have restricted responses to specific and

predictable times or to certain activities respectively. A Diary study method com-

bined with ESM’s random-interval sampling allows for a wide range of boundary

pushing and ecologically valid queries to be captured, during a range of times and

activities, without restriction, as they are deemed beneficial to the participant.

4.3.3 Data Collection Application

We created a data collection application5 for the Apple Watch using Swift,

and deployed it via Apple’s TestFlight beta program to each participant’s individ-

ual Apple Watch. We chose only the Apple Watch due to the immensely simple

logistics in installing our application remotely. This also ensured consistency in

data collection procedures. Our application utilized Google’s Firebase Realtime

Database to collect and store the responses submitted. As our goal is to capture

5https://github.com/reyb/Personal-Health-Query-Recorder
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queries for personal health data exploration on smartwatches, the application was

designed purely for data collection; it did not answer the desired queries from our

participants.

Data Collection Questions

Our application consists of up to four questions for participants to respond

to. All questions were required to be answered when submitting a response. The

questions and input methods were designed to support fast and easy reporting of

responses while mitigating interaction difficulties on a small-screen device. This

included the use of natural language reporting for open-ended questions (Q1 and

Q2), leveraging the flexibility and ease in reporting ability [99], and single screen

options for Q3 and Q3-1. Our application captures the following information, il-

lustrated in a flow diagram shown in Figure 4.1 and described below:

Q1 (open-ended): What question or command do you have of your health
data? This allowed us to capture the personal health data query from the partic-

ipant. Q1 elicited a query regarding what participants were interested in quickly

exploring or accessing on their smartwatch. Participants could either speak or type

a query using the Apple Watch’s built in text-entry methods. Upon recording the

query, it could be reviewed on-screen in real-time and repeated to correct errors, if

needed.

Q2 (open-ended): What are you currently doing? This helped us gain general

contextual and daily activity information of the participant’s daily life at the time of

recording a desired query. For simplicity on the part of the participant, we allowed

for natural language input in the same manner as the first question.

Q3 (dichotomous): Is your response related to your current activity? As a

personal health query may or may not relate to the current activity being performed,

this question allowed us to better understand the association between a participant’s

current activity and their personal health data query given in Q1. Either a ”Yes” or

”No” answer could be selected.

Q3-1 (multiple choice): Where are you in your activity? This would appear

to the participant only if they selected ”Yes” in the previous question. From this
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question we aimed to gain further knowledge, understanding the in-situ moment

surrounding an activity, that a need for exploring personal health data arises. ”Be-

fore,” ”During,” or ”After” could be selected. In order to better understand when

a desired query may be temporally related to an activity, we ensured participants

understood that our definition of relation could also include just before starting and

after completion of an activity. For example, a participant could be going to the

gym looking to soon start their workout (Before), actively engaged in their workout

(During), or heading back to the change room having just finished (After). By fur-

ther exploring this time distinction, we can introduce a greater level of granularity

and aim to understand when to provide exploratory capability or further insight to

smartwatch users.
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Figure 4.1: A flow diagram of the questions asked within our data collection application.
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Reminders

To elicit many responses, our application employed two forms of reminders.

First, we used push notifications. We customized these notifications to each partic-

ipant, based on their self-declared wake and sleep times. Furthermore, the notifi-

cations were systematically random in that a notification would be sent at a partici-

pant’s declared wake time, and then concurrently sent throughout the day between

one to two hour intervals (chosen at random) after the prior notification. Notifica-

tions in this manner were repeated until the participant’s declared sleep time. This

method was chosen to ping participants at different times throughout each day,

ideally attempting to remind them of the study at different in-situ moments within

their daily lives.

Second, our application also leveraged a watch-face widget, which could be

used on a range of available watch faces. All participants were asked to update

their watch face to incorporate this widget. We offered a small circular widget

which was continuously displayed on a participant’s home watch-face and addi-

tionally provided a counter of the number of responses a participant had submitted

throughout the study. Moreover, this widget allowed quick and easy access to our

application, and thus recording a response, by simply tapping on the widget.

4.3.4 Study Procedure

Our study included three stages: an introduction and tutorial session, a seven-

day in-the-wild data collection period, and a final interview. The procedure and

study materials were iterated upon during two pilots with people who were re-

cruited in the same means as our participants, thus meeting our study’s inclusion

criteria. Participants provided consent at the start of the study.

Introduction and Tutorial Session.

To start the study, the participant joined a Zoom meeting, ˜45 minutes long,

where we introduced and acknowledged their interest and participation in our study.

Participants were encouraged and asked to interject with any comments and/or

questions during the meeting. The researcher shared presentation slides (please
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refer to the supplemental material) via the screen sharing functionality. The goal

of the project was expressed to the participant along with other important remarks

before they completed a demographic survey. Then, the researcher guided the

participant through the installation and setup process of the application on the par-

ticipant’s own Apple Watch to be used throughout the data collection stage of the

study. This included setting up notifications and the watch-face widget for re-

minders. The researcher then gave participants a walk-through of the application

through an on-screen emulator running the application on the researcher’s com-

puter and shared via screen sharing. Upon completion of the walk-through, the

researcher gave participants unrelated-to-the-study practice trials to ensure the ap-

plication worked smoothly and any technical issues related to data collection were

appropriately handled.

Finally, the researcher gave an explanation on the potential queries and purpose

of the study. The researcher asked participants to provide queries that they deem

as beneficial, without worrying about current technological limitations. Queries

would ideally allow participants to better explore or access their personal health

data directly on their smartwatch. The researcher also asked participants to only

provide a query when it both arose within their daily lives and was deemed to be

a data exploration task they would like to perform on their smartwatch. The re-

searcher explained to participants that feedback or answers to their queries would

not currently be given, however they should envision receiving this directly on the

smartwatch. No specific examples were provided to the participants, so as not to

bias their potential queries. However, high-level categories of health data explo-

ration (e.g., history of data, goals/performance data) were discussed to invigorate

ideation.

Data Collection.

Participants used the application to submit responses over the course of the

next seven days, and were instructed to wear their watch as they normally would.

A response could be submitted at any time throughout the day. We did not require a

minimum number of responses throughout the study, to not elicit forced responses
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from participants. Due to the potential for participants to be active when a query

arose, we instructed them to only provide a response through the application when

it was safe for them to do so. Notifications sent each day acted solely as reminder

of the study.

Final Interview.

After the final day of data collection, a Zoom meeting was held where a re-

searcher conducted a semi-structured interview with each participant. The meeting

was audio recorded and later transcribed. The goals of the interview were: (1)

to gain a better understanding of the smartwatch’s role within each participant’s

health journey; (2) to explore additional information regarding in-situ smartwatch

use for personal health data exploration; and (3) to discuss preferences in terms of

interaction and visualization when exploring personal health data on a smartwatch.

To aid in recollection, a report of each participant’s queries were shown to them via

Zoom’s screen sharing functionality. Finally, the researcher answered any remain-

ing questions from a participant, thanked them, and provided the compensation.

Each interview took between 30 and 45 minutes.

4.4 Analysis and Results

4.4.1 Analysis

A total of 229 responses were logged through our application. First, we man-

ually inspected the data, curating a dataset that only included valid responses.

Through this process, we discarded 24 responses which fell under three categories:

(1) the query had no specific element of collected personal health data (e.g., ”Am I

over the food poisoning from yesterday?”); (2) the query was related to smartwatch

functionality rather than personal health data exploration (e.g., ”Is there a better

way to track active minutes?”, ”How much battery does tracking a walk use?”, ”Is

there a way to account for temperature while working out?”); (3) the query was

action based and did not allow for exploration (e.g., ”Set my bedtime for 12 AM

and wake me up by 8 AM”, ”Start outdoor run”, ”Record 96 ounces of water for
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the day”). After this process, 205 valid responses remained for analysis.

We qualitatively analyzed the valid responses, containing a query, activity of

the participant, and relation to this activity through an open coding process. To do

this, we followed the same approach as used by Srinivasan et al. [184]. To specify,

two researchers first explored the reported queries and activities for broad themes,

subsequently creating a coding schema. Then, the same researchers individually

coded random subsets of the data after which they came together to compare results

for agreement. They refined the schema and codes, and individually coded a new

random subset of data, until an 85% agreement was reached. Once the researchers

came to agreement, the data was independently coded in full using the mutually-

agreed upon codes, again working together to reach full consensus as needed.

4.4.2 Results

Table 7.1 summarizes the demographic, smartwatch usage, and health data col-

lection information, as well as response counts of our study participants. Partic-

ipants were aged from 18 to 56 (M = 29.8) and held a range of occupations. At

the time of conducting the study, participants had collected personal health data

for an average of 39.3 months (SD = 32.7 months) and had used a smartwatch for

an average of 31.3 months (SD = 26.0 months). Collected personal health data by

participants mainly focused in two categories, physical activity (18/18 participants)

and sleep (7/18 participants) data. Of our 205 valid responses there was an average

of 11.4 responses per participant (SD = 5.5; Min = 3; Max = 22).
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Table 4.1: Summary of demographic information, health data collection, smartwatch usage experience, and number of

responses reported from our study participants.

Alias Age Gender Occupation
Health Data
Collection

Smartwatch
Usage

Collected Data Study Responses

P1 19 F Customer Service 1y 2m 1y 2m Sleep, Physical Activity, Women’s Health 8

P2 31 F Care Coordinator/Dementia Counselor 10y 0m 2y 6m Sleep, Physical Activity, Women’s Health 10

P3 38 M Communications Advisor 5y 6m 5y 6m Sleep, Physical Activity 16

P4 35 F Teacher 3y 0m 3y 0m Physical Activity, Women’s Health 9

P5 33 M Information Security Specialist 5y 1m 1y 0m Sleep, Physical Activity 9

P6 24 F Student 1y 0m 0y 8m Nutrition, Physical Activity 3

P7 42 M Claim Evaluator 3y 0m 3y 0m Physical Activity 15

P8 25 F Scientific Evaluator 0y 3m 0y 3m Physical Activity 6

P9 36 F Post Doctoral Fellow 0y 8m 0y 8m Physical Activity, Women’s Health, Mindfulness 20

P10 30 M Student 7y 0m 7y 0m Physical Activity 12

P11 23 F Student 2y 3m 2y 3m Physical Activity, Mindfulness 16

P12 56 F Retired Lawyer 1y 9m 1y 9m Physical Activity 7

P13 22 F Educational Assistant 6y 4m 6y 4m Physical Activity, Mindfulness 18

P14 21 M Student 2y 1m 2y 1m Physical Activity 22

P15 18 F Customer Service 0y 5m 0y 5m Nutrition, Physical Activity, Mindfulness 11

P16 25 M Software Engineer 6y 7m 6y 7m Sleep, Nutrition, Physical Activity, Mindfulness 5

P17 40 M City Planner 1y 11m 1y 11m Sleep, Physical Activity, Mindfulness 15

P18 18 M Student 0y 11m 0y 11m Sleep, Physical Activity 3
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We coded our valid responses, leading to the following five dimensions: (1)

personal health data insight category, (2) current daily activity, (3) whether the

query was related to the activity, (4) the time in activity if related, and (5) the query

type. Taken together, these can enable a better understanding of the characteristics

surrounding desired smartwatch data queries, combined with the types of insight

that are of interest during certain daily activities. Below we detail each dimension

and their codes.

Expanded Personal Health Data Insight Categories

Through the queries desired by participants, we coded the overarching in-

sight category for which each query aligned. Table 4.2 shows the codes, descrip-

tions, and selected queries. We expanded upon categories from previous works

[3, 29, 30, 108] to assign our collected queries into the following codes: Current

Status or Value (89, 42.9%), Historical or Trend (67, 32.7%), Combination or Com-

parison (59, 28.8%), Goals or Performance (57, 27.8%), Preemptive and Proactive

(47, 22.9%), and Contextual (24, 11.7%). These codes are not mutually exclu-

sive, and thus a query can have multiple codes (and as such the percentages above

are individually calculated from the 205 total queries). For example, ”How much

dancing do I need to do to burn 800 calories?” (P18) can be seen as fitting into

both the Preemptive and Proactive and the Goal and Performance categories. Of

the six codes, participants reported queries in a minimum of 3 codes and maximum

of 6 (M = 5.0, SD = 1.0).
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Table 4.2: Query insight categories. Please note, categories are not mutually exclusive. ** denotes a new insight category

found in our work; * denotes an expanded insight category as compared to [3, 29, 30, 108]. Q is a question; C is a command.

Response Category (# of Responses, % of
Total, # of Participants)

Description Example Responses [all directly quoted]

Current Status or Value *
(89, 42.9%, 17)

Current, single value, metric that is collected
and/or aggregated on the smartwatch to be
given to the user.

(Q) Am I over or under my calorie goal at the moment? (P15)*
(Q) How many calories did I burn that workout? (P4)
(Q) What was my peak heart rate during my workout? (P15)*
(C) Give me a report for my readiness for activity. (P16)

Historical or Trend
(67, 32.7%, 18)

Previously collected metrics, prior to the
current day’s or activity’s. Can often be used to
explore changes over time.

(Q) How long on average does it take me to fall asleep? (P3)
(Q) How many steps have I taken this week? (P9)
(C) I would like to check a trend in my sleep in the past seven days. (P1)
(C) Show me my body weight trends for this month. (P6)

Combination or Comparison
(59, 28.8%, 17)

Combine and/or compare two or more different
measured values. These can be done over time,
between metrics, between activities, or
between oneself and others.

(C) Compare my running stats with the same time last year. (P17)
(C) Show me a graph of my runs both time and distance in 2021. (P11)
(Q) Does my walking pace change when I walk with someone else? (P12)
(Q) How many calories were burned in today’s work out compared to yesterday? (P6)

Goals or Performance
(57, 27.8%, 14)

Goals, such as for steps, calorie intake, calories
burned, distance travelled, etc. Performance
stems from completing a goal, as well as
quality metrics such as fast/slow or best/worst.

(Q) How fast did I finish my 1st kilometer of my hike today? (P6)
(Q) What was my best kilometer during my run? (P4)
(Q) Which activity had the highest calories burned per minute? (P18)
(C) Tell me when I reach a nine minute walking pace. (P12)

Preemptive and Proactive **
(47, 22.9%, 15)

Advice or information that will allow one to be
preemptive or proactive in making decisions
and/or to prepare for an event in the future.

(Q) How long do I need to run three times per week to achieve the November challenge? (P17)
(C) Give me a suggested work out based on my readiness score. (P16)
(Q) Is there a day of the week I am more likely to beat (friend) in our fitness challenge? (P12)
(Q) How much dancing do I need to do to burn 800 calories? (P18)

Contextual *
(24, 11.7%, 9)

Impact and/or affect of an external or collected
metric on another.

(Q) How is the air quality affecting my walk? (P16)
(Q) Is my cycle affecting my sleep? (P2)
(Q) Is my running pace slower in the days following a strength training workout? (P13)*
(Q) What is the impact of my sleep in my running? (P17)*
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Current Status or Value insight was often about more than just the simple met-

rics captured. Amini et al. [3] found that participants explored step count, distance,

calories, pace, speed, and heart rate during an activity. While this remains to be

seen in our study, we found a broader definition of current metrics desired; these

included heart rate zones, total values from activities throughout the day, peak val-

ues or fluctuations of metrics throughout the activity, and aggregated values such

as perceived exertion (see Table 4.2 for specific queries). These examples, which

can be seen as increasingly unique-to-user, should be considered within smart-

watch health applications to expand the usefulness and benefit to a broader range

of smartwatch users.

Contextual exploration was utilized by participants to find cause and effect be-

tween a range of data. Choe et al. [30] discussed participants’ interest to include

and explore the effect that external data such as time of day, location, or weather

can have on their own collected personal health data. While our captured queries

from participants garnered similar contextual information, we also note that partic-

ipants were inclined to look for cause and effect using their own collected data as

context. For example, ”Is my cycle affecting my sleep?” (P2), ”Does my walking

pace change when I walk with someone else?” (P12), ”What is the impact of my

sleep in my running?” (P17), and ”Does weightlifting focusing on different muscle

groups affect my heart rate?” (P14). As participants used the smartwatch to cap-

ture a range of health and activity data either automatically or through a discrete

input, they desired to explore context surrounding these captured instances on the

smartwatch.

Preemptive and Proactive queries, a new form of insight brought forward from

our study compared to previous works [3, 29, 30, 108], make up ˜20% of our col-

lected data from 15 of 18 participants (see Table 4.2 for specific queries). Smart-

watches influence decision-making through on-screen metrics related to activities

[3, 108]; for example, a runner glancing at their smartwatch can adjust their pace if

it’s below their desired value. Our participants, however, were looking for a wider

range of influential exploration from their smartwatch, such as to help choose a
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workout for the day, plan an activity based on goals, or to pick up on elements that

they alone may not be able to predict. This form of insight was seen as a means for

preparing oneself for a future event rather than simply reflecting on current or past

metrics.

Participants were looking to utilize these Preemptive and Proactive insights

from their smartwatch to influence immediate and in-situ decision making, as well

as for some daily and longer term planning. This longer term planning was often

seen as tied to the Goals or Performance category, as 23/47 Preemptive and Proac-

tive queries were also to gain insight on how to achieve immediate or future goals.

Finally, while about a half of the queries in this category were temporally related to

an activity (i.e., immediate influence), we further note that Preemptive and Proac-

tive queries were desired on the smartwatch throughout the day (i.e., longer-term

planning).

Smartwatch Personal Health Data Queries Desired throughout Daily
Activities

Analyzing the daily activities of participants led to seven codes. These codes

categorize the current activity being performed in a participant’s daily life, during

which their desire for exploration on the smartwatch arose. These codes include:

Physical Activity, Self Care, Work, Leisure, Sleep, Transportation, and Other; the

codes, their descriptions, and counts can be seen in Table 4.3. Codes were mutually

exclusive, and thus each response was given a single code. Of the seven codes,

participants reported responses in a minimum of 2 codes and maximum of 6 (M =

4.1, SD = 1.4).
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Table 4.3: Summary of the daily activities participants were undertaking at the time of a response, and the relation of the

reported queries to these activities: not related, before, during, after.

Daily Activity Description & Examples
# of Responses (% of

Total), # of Participants
Query Related to Daily
Activity

Physical Activity
Body movement that requires more energy
than resting. (e.g., dancing, walking,
running, weight training, yoga, sports, etc.)

70 (34.1%), 16

Self Care
Activities that pertain to normal day-to-day
human function. (e.g., cooking, eating,
chores, morning ready routine, etc.)

44 (21.5%), 12

Work
Fulfilling duties either for job or school.
(e.g., job based tasks, studying, attending
meetings, etc.)

29 (14.1%), 12

Leisure
Activities performed for relaxation and fun.
(e.g., reading, watching TV, lounging, etc.)

25 (12.2%), 14

Sleep
The absence of wakefulness. (e.g., napping
or nightly rest)

17 (8.3%), 9

Transportation
Moving from point A to point B. (e.g.,
driving, taking the bust/metro, taxi, etc.)

10 (4.9%), 5

Other
Activities that do not fit within the prior
categories. (e.g., within the study interview,
due to mHealth app notifications)

10 (4.9%), 560



We asked participants whether their personal health data query was related to

their current activity as reported above (Q3), and thus in-situ. This was either a Yes

(107, 52.2%) or No (98, 47.8%) answer; examples from our captured data include

”Leaving the gym” - ”Show me my heart rate chart from today’s gym session” as

being related while ”At work” - ”What was my fastest kilometer in my run?” as

not. We see an almost equal distribution overall, however, when combined with

the activity we see a distinction. The most drastic example of this distinction is

in relation to Physical Activity. Here, 97% of queries reported were related to

the Physical Activity being done. In contrast, all other daily activities, aside from

Sleep, provided time within daily life for increased insight and reflection that was

unrelated to the participant’s current activity. Within our captured responses, 16 of

18 participants found it beneficial to report a query both related and unrelated to

the current activity they were doing.

When queries were related to the daily activity being done by the participant,

we additionally asked whether they were just Before (24, 22.4%), During (38,

35.6%), or After (45, 42.0%) the activity. The results collected follow closely with

our demographic survey which asked when participants aim to explore their data

on their smartwatch, Before (4/18 participants), During (10/18 participants), and

After (15/18 participants).

Participants noted during the interviews that exploration Before activities could

only do so much to affect the activity collecting the health data once started. In re-

lation to our insight categories, broader Preemptive and Proactive as well as general

Goal insight was most often queried Before an activity. This was seen as a means

to help prepare for the activity at hand, rather than exploring current or past data.

During an activity, specifically for Physical Activity, expanded insight beyond

simple metrics pulled participants away from being in the moment and focused

on the activity at hand, thus was not as desired. P5 mentioned ”It wasn’t much

[exploration] like during the workout ’cause in the workout I found that is more like

just concentrating on whatever I was doing and I didn’t really have any questions

to ask.” This is reflected in the Current Status or Value insight category being the

most queried During an activity. In fact, of the queries that took place surrounding

Physical Activity, 26.5% were During the activity, or in-situ, of which 68% of these
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were simply to understand a Current Status or Value.

Finally, exploration after an activity allowed for immediate reflection to take

place which could help influence future activities. Interestingly, participants most

often looked to perform data exploration surrounding Physical Activity after the

completion of and regarding the activity itself (32/66 queries). This reflection After

an activity was mainly of the Current Status or Value, Historical or Trend, and

Combination or Comparison insight categories.

From the interviews held with participants, we note that these captured results

may not provide the entire picture. First, while our results provide a general under-

standing of what queries and when these queries are desired, we note that across

combined insight categories, daily activity, and relation to the activity, our results

show queries reported in 128 unique combinations of these. This highlights the

deeply unique and personal aspect to personal health data exploration needs. Sec-

ond, two participants suggested that while they may utilize different in-situ mo-

ments within an activity to explore their data, the activity itself was not always the

determining factor when they aim to explore their data on the smartwatch. Notably,

current overarching goals set by a participant and how long they had used a smart-

watch for tracking data could affect the type and time of their exploration. As P7

discussed, ”Because I’ve been using it [the smartwatch] for like a couple years,

uhm, I think I’m pretty good at like knowing what kind of workout will make me hit

my calorie burn goal or get the steps I need or those kinds of things.”

4.4.3 Natural Language for Personal Health Data Exploration by
Lay Individuals

Participants had first-hand experience using natural language throughout our

in-situ study. This included being in different environments and surrounded by

others. We note that all participants utilized speech to record their queries, with two

participants typing a subset. This aspect allowed us to discuss during the interview

participants’ thoughts towards the use of natural language.
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Positive Reaction Towards the Use of Speech Based Smartwatch Interfaces

Participants were overall excited for the potential to use speech to explore their

personal health data. Sixteen (16) participants suggested they would use a speech-

based interface for data exploration on smartwatches if it was available. P13 stated

”I’d prefer it because it’s quicker for me. You know, like if I’m in the middle of

doing something, it’s easy just for me to say it and then move on.” with P16 adding

”the responses get more tailored, like if you ask it and it like answers perfectly, it

just makes it even better to use.” P12 discussed how natural language could even

benefit the in-situ nature of smartwatch use during walking, ”It works really really

well while walking, ... if you have your earbuds in or like if you lift the watch to

your mouth you can get a decent signal without much interruption and you don’t

have to talk super loudly.” These discussions suggested that speech could be a great

tool for smartwatch interaction, which has an already limited interaction space and

becomes even more limited while mobile [176].

Reduced Privacy Concerns for Speech-Based Personal Data Exploration

Prior research with a focus on natural language and speech as an input modality

discusses limitations regarding privacy and social acceptability [55, 98, 116]. This

includes disrupting others and the awkwardness of talking to a device. Through

our discussion with participants, we found that half (9) had limited to no con-

cerns regarding the use of natural language for personal health data exploration.

Natural language was mainly seen by participants as beneficial and acceptable for

two reasons. First, natural language is becoming more commonplace, through im-

proved interfaces and the broader use of Bluetooth headphones/earbuds. Second,

the data exploration that was often desired was not seen as overly private, personal,

or specific to a user; thus, participants were open to speaking the questions and

commands around others if needed. P15 summarized this by saying, ”This kind of

stuff [the responses provided] is more objective data, which I guess to me, is not

as private as like thoughts and opinions, that’s more subjective. That I’d be con-

cerned about someone thinking negatively versus like if they see that oh she didn’t

get out of bed today.” We, however, note that for half of our participants who were
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concerned with using natural language for personal health data exploration, their

queries were seen as being increasingly personal to them, and thus were uncom-

fortable in public settings. Yet, while this still hinders the potential use of natural

language interfaces for some, we remain to see an overall difference in attitude

compared to the prior mentioned works.

Additionally, as personal health data exploration has the potential to become

increasingly personal, applications will likely become more aware of the unique

exploratory needs of users. Previous research has suggested that privacy concerns

do not determine whether people use mHealth applications or not [16]. In relation

to this, all our participants (18) suggested that, due to the increase in perceived

benefit, as long as the application came from a trusted source and had the nec-

essary measures in place [205], they had no problems providing these types of

exploratory questions or commands. This follows a privacy pragmatist approach

which suggests a person may have strong feelings about privacy, yet they are will-

ing to allow access to their information for their own benefit [87], and is often seen

within younger populations [102].

4.5 Discussion and Future Work

4.5.1 In-Situ and Non-In-Situ Preparation-for-Action

Reflecting on personal data using a smartwatch can occur increasingly close to

the action, for which the reflection is related, to benefit on-the-fly decisions [3, 69,

107]. In fact, when reflection and action are related, Ploderer et al. [149] suggest

there exists reflection-in-action (i.e., real time and Current Status or Value insight)

and reflection-on-action (i.e., aggregation of data such as Historical or Trend, or

Contextual insight) enabling both maintenance and discovery, respectively [108].

Rather than reflection-on-action only taking place in-situ and immediately after

an activity, our results also showcase a need for discovery and reflection while

away from an action for which the query would be related. We further postulate

that smartwatch users are looking for additional discovery through preparation-for-

action. This form of exploration was deemed as beneficial by our participants most
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often for Preemptive and Proactive as well as goal and performance insight. This

preparation-for-action not only happens in-situ, immediately prior to an action, but

also away from the action for which the reflection was related. Many research

works focus on the in-situ exploratory capabilities of the smartwatch [3, 86, 99,

163], however expanding on the smartwatch’s capabilities during non-in-situ and

prior to in-situ usage scenarios could be critical for further adoption, continued use,

and a range of unrealized benefits.

4.5.2 Query Insight Category Dependent on In-Situ Activity

While coding our data, we recognized that identical queries could lead to dif-

ferent insight categories. For these, the insight category of the query was highly

dependent on the daily activity being performed and its relation to the query (i.e.,

whether the query was being reported in-situ or not). As an example from our

dataset, ”What is my average walking pace?” (P3) can imply and elicit different

meaning depending on when it is asked. For instance, if the query was asked in-situ

while during the middle of a walk, the answer could likely be seen as the average

walking pace of only the current walk (Current Status). However, if the query

was asked while sitting down at work the answer may require the calculation of

the average walking pace across all walks recorded (Historical or Trend). Thus,

utilizing contextual, when and where, information available from the smartwatch’s

sensors as well as user-initiated activities can at times become a key component

in understanding a lay person’s personal health data query and information needs

on a smartwatch. This can then be crucial in regards to formulating appropriate

responses to allow for lightweight and transient data exploration that is beneficial

to smartwatch users.

4.5.3 Limitations

We recognize that our strict inclusion criteria resulted in the exclusion of indi-

viduals with impairments. Thus, our dataset is not fully representative of all who

utilize a smartwatch for personal health data collection, exploration, and health

monitoring. While our work largely provides a general understanding of personal
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health data queries on smartwatches, we suggest these aforementioned user groups

should be studied in their own regard.

Due to the early nature of our work, we chose to not provide feedback to our

participants (i.e., the answers and data representations in response to queries). This

allowed us to capture a broad range of desired smartwatch data queries without

influencing further potential responses. However, this design does limit us in un-

derstanding any forms of continual and serendipitous exploration on the smart-

watch, such as asking a single followup question based on feedback given. During

typical data exploration, one explicit query is often not enough to fully represent

what is interesting to a person. Feedback given in response to a query can often

lead to subsequent and unanticipated queries [129]. Moreover, this does not al-

low for discovery of new and interesting information beyond what is asked. While

the smartwatch may not allow for lengthy data exploration, the limit to which the

smartwatch can enable follow-ups, the relationship between the smartwatch and

other data exploratory tools (i.e., smartphone, tablet, desktop), and the impact that

given feedback has on smartwatch personal health data exploration should be fur-

ther studied.

Finally, as with any elicitation study there are additional limitations to note.

First, we are likely not able to capture all usage scenarios participants may experi-

ence, and for which a desire for smartwatch data exploration could arise. Examples

of such times include a person preparing for a marathon or someone on vacation.

Second, participants often do not realize a device’s full potential limiting the range

of responses submitted. For example, blood glucose monitoring has a potential

future within smartwatches, yet was not a component in any queries reported by

our participants. We aimed to mitigate both of these limitations through recruiting

eighteen participants, each running the study for one full week (including week-

days and a weekend), and expressed for participants to not worry about current

technological limitations instead focusing on queries that they desired to be possi-

ble. As such, we believe that our results remain to provide a broad understanding

and new insight into queries desired, which in future can be translated to a range

of usage scenarios and newly captured data.
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4.6 Summary

This chapter offers an empirical understanding of what personal health data

queries smartwatch users wish to explore throughout their daily lives. Through an

in-situ diary study with 18 participants over a week, we captured queries that have

the potential to facilitate exploration on a smartwatch in various daily contexts.

Through the results of this data collection and a final interview with participants,

we offer the elicited queries through a public dataset (i.e., what), report on query

insight categories (i.e., why), and query relation to daily activities (i.e., when and

where). Participants reported a desire to utilize the smartwatch for momentary and

immediate personal health data exploration, not only during in-situ moments but

also across a range of daily activities. We suggest several key implications for the

design of smartwatch mHealth applications; including supporting preemptive and

proactive exploration, expanding upon current status and contextual exploration,

allowing for exploration away from an in-situ tracked activity, and the offering of

natural language interaction.
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Chapter 5

Towards Natural Language
Interaction for Personal Health
Data Queries on Smartwatches

With the knowledge of what queries are desired, we can now begin

to focus on how to enable interaction for such queries. This chapter,

and the next, centers on the following broad research question: How

can we expand the expressivity of data exploration on the smartwatch,

through both multi-modal input and output modalities, within the con-

fines of the smartwatch’s capabilities and data exploration needs?

This chapter specifically highlights necessary components to consider

when allowing for the handling of the given queries. Work presented

in this chapter resulted in a publication in the conference on Mobile

Human-Computer Interaction [156]. The article was a collaborative

effort among myself, Charles-Olivier Dufresne-Camaro, and Pourang

Irani. Charles-Olivier Dufresne-Camaro conducted the coding pro-

cess alongside myself and provided editorial support. Any mention of

‘we/our’ in this chapter refers to my co-authors.
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5.1 Introduction

Smartwatches, through advancing input modalities such as touch, speech, ges-

turing, and buttons/dials, have the potential to enable broader interaction with the

collected data. Fundamentally, however, our lack of knowledge surrounding the

interactive requirements for personal health data queries hinders progress. More

specifically, in this chapter, we focus on the following research question:

RQ1: Through analysis of the personal health data queries collected,

what components comprise a personal health data query desired for

exploration on the smartwatch and provided by lay users?

Figure 5.1: Components within a personal health data query explored within this

chapter. We highlight various interrogatives (e.g., ”What was”), aggregations (e.g.,

”peak”), data attributes (e.g., ”heart rate”), and filters (e.g., ”last hike”) to be con-

sidered when processing a query.

In this chapter, we focus on understanding and characterizing components of

personal health data queries desired for exploration on the smartwatch. Through-

out, our motivation lies in increasing the capability for data exploration directly on
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the smartwatch. Yet, results conveyed in this chapter can be seen as being benefi-

cial for a range of devices. To achieve our research goal, we extend and compare

to work previously done [154], through the analysis of our previously captured

dataset. We explore various dimensions, including attributes of data requested,

aggregation methods, mechanisms for filtering, and interrogatives used within the

queries; see Figure 5.1 for an example of these dimensions combined within a

single query. By analyzing across these dimensions, we provide a better under-

standing of how people want to explore and access their personal health data on

smartwatches. In turn, the results shared can influence interaction in applications

catering to smartwatch data exploration.

Our contribution is as follows:

C1: Identification of key dimensions in personal health data queries,

such as interrogatives, data sources, aggregations, and filtering mech-

anisms. These insights provide a foundation for enhancing the natural

language processing capabilities on a range of smartwatches, key to

the development of part-of-speech tagging capabilities.

5.2 Relevant Related Work

5.2.1 Natural Language Query Analysis

In this section, we highlight work on natural language query analysis as these

often must characterize and dismantle queries for understanding and processing.

While we analyze a natural language query dataset in this work, we highlight that

we do not propose natural language as the only means of interaction with personal

health data on the smartwatch. Instead, we utilize works in this area to simply

gain a better understanding of the components involved when querying data and to

situate our analysis among related work.

With the increasing capability for devices to perform natural language pro-

cessing (NLP), even on a smartwatch, many toolkits have become available for

use [114, 124]. These toolkits help perform common NLP tasks such as language

identification, tokenization, sentiment analysis, named entity recognition, and part-
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of-speech tagging. However, these toolkits do not explicitly focus on parsing health

related information, nor do they offer solution if we do not know what to look for

when performing tokenization and part-of-speech tagging. As such, we must first

gain a general understanding the components used within potential personal health

related queries before using these tools.

Natural language interfaces (NLIs) have become increasingly popular for gen-

eral interaction (e.g., Siri, Alexa, and Google Assistant have become more per-

vasive in daily life) [21, 122] and for visual data exploration [98, 183]. While

mainly focused towards data experts, research has collected and explored natural

language queries across multiple explicit and implicit dimensions. These include

data attributes, chart types, data encodings, aggregations, design references, ques-

tion words, and verb tenses [65, 154, 169, 184, 187]. While not all dimensions

are necessary for personal health data querying on the smartwatch (i.e., some of

the prior works focus on specific applications such as for visualization creation),

these provide insight into required components which we can then code for and

subsequently analyze to handle and process a data-driven query.

5.3 Dataset and Analysis

5.3.1 Dataset

We use the previously collected dataset from Chapter 4 in our analysis. Within

the dataset, our analysis focuses on the queries themselves while also incorporating

other elements of the dataset for granularity (i.e., the relation of the query to a

current activity).

5.3.2 Coding Procedure

Analyzing the dataset, we coded components of the queries. To ensure coding

accuracy, we followed a procedure used within related work [184] and similar to

Chapter 4. Specifically, our procedure was as follows: Two researchers first ex-

plored the queries independently, creating a coding schema that would outline the

potential dimensions that could be assessed. After discussion, dimensions were
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chosen for which to analyze and code. As a team, a code book was created. Then,

the same researchers individually coded a random subset (10% of all queries avail-

able) of the data. The assigned codes were then compared for agreement. Until

85% agreement was reached, the code book was refined and a new subset of data

was individually coded. Once agreement was obtained, the entire dataset was in-

dependently coded using the finalized and agreed upon code book. Finally, any

remaining code disagreements were discussed and resolved until a full consensus

was reached and a single code was assigned for each dimension explored.

The dimensions explored within the coding schema, and codes used within,

followed closely with prior work exploring natural language query interfaces [154,

184]. Hence, we analyze the data type requested, data attributes, filtering mecha-

nisms, and the interrogatives used.

Throughout, explicit and implicit/semantic codes are utilized to describe as-

pects of the data. As the dataset was captured through lay-users, we allow syn-

onyms when using the explicit code rather than deferring these to another code.

For example, peak can be seen as an explicit aggregation for max. In contrast,

how many is an implicit/semantic aggregation of count. These will be highlighted

further in their respective subsections below. Lastly, when reporting codes, we

provide round brackets containing the count of queries the code captures and the

percentage of the dataset this represents.

5.4 Results

Exploration through Commands; Information Immediacy through Questions

Guided by the definitions and codes created by Srinivasan et al. [183] for

natural language data exploration, we found that participants’ queries were framed

either as a Question (173, 84.4%) or Command (32,6 15.6%).

The majority of Commands, provided by over a half of participants (11/18),

were of the Historical or Trend as well as Combination or Comparison insight cat-

6We categorized two instances of queries from P18, “Summary of my sleep cycles,” as an (im-

plicit) Command.
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egories (21/30). Examples include “Show me a graph comparing my caloric intake

over the last week” (P7), “Show me a graph of my runs both time and distance in

2021” (P11), “Give me a report for my readiness for activity” (P16), and “Com-

pare cycle data from today to the same day in my last cycle” (P2). Through these

Commands, we can see that the desired outcome of the participant is not explic-

itly clear (i.e., while we can try to provide an optimal visualization, there is not

a discrete answer that can be given). Additionally, these Commands often sug-

gested that participants had the intention to further explore or view a larger range

of collected health data, often through on-screen visual representation directly on

the smartwatch.

Conversely, a Question was often much more direct and closed-ended, with the

intended result of the insight seemingly known to the participant. All participants

provided queries in the form of a Question. Examples include “Have I stood up

this hour?” (P17), “How long on average does it take me to fall asleep?” (P3),

“How many hours did I sit yesterday?” (P9), “How many steps did I get during

that 2 kilometer walk?” (P4), and “What was my calories burned in the last 30

minutes?” (P3).

These Questions benefit the type and length of interaction that is typically un-

dertaken by smartwatch users [148, 192], as they can allow for direct feedback.

P14 discussed during the interview, “I think the question sort of implies immediacy

[...] and I think it’s the immediacy that the watch would be nice if it covered.” This

finding provides us with valuable information surrounding the intent and perceived

use of the smartwatch for personal health data exploration, especially while in-situ.

Often times, throughout one’s day, discrete and immediate insight is valuable. This

insight, while potentially leading to further exploration, does not require it, and

thus the use of a smartphone or desktop application is not immediately needed.

5.4.1 Attributes of Requested Data

The data requested can be organized into categories, differentiated through ac-

tivity and the data that is collected. Figure 5.2 (left) highlights the eight codes used

to quantify data types of interest. Not surprisingly, as the smartwatch is generally

73



Figure 5.2: Left: Counts of the data types the queries were focused towards. Right:

Sub-codes within the Physical Activity code.

used as a fitness and physical activity tracker, physical activity data constituted the

majority of queries desired (105, 51%). This includes data such as steps, general

tracked activities (e.g., “Show me a history of all my dance workouts.” or “How

many times have I worked out this week?”), and general metrics (e.g., “Did I close

all my rings today?” or “How many active minutes am I at?”); see Figure 5.2 (right)

for a complete breakdown.

Furthermore, heart data (e.g., heart rate, ECG) (29, 14%) and sleep data (e.g.,

sleep time, wake time, duration, sleep stages) (18, 9%) were of interest. For granu-

larity, we chose to code heart data separate from physical activity and sleep as this

data is captured across and independent of both of the former mentioned codes.

Not surprisingly, data that is currently tracked automatically on the smartwatch

(i.e., physical activity, heart, and sleep data) were the most queried. In contrast,

other data types such as weight, women’s health, and nutrition (e.g., number of

calories or meals eaten, water intake) which require discrete input or are not cur-

rently supported, were less queried. As more data becomes automatically sensed

and calculated for tracking, these can be expected to also have relatively higher

interest for data exploration.

Attribute references can be seen as words within a query that correspond to

a data attribute or specific data point within the collected available data. These
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references were either (i) explicit, where the reference in the query was specific

to a data point being captured (e.g., “What is my current heart rate?” and “How

many steps did I get during that 2 km walk?”) or (ii) implicit, where the reference

to data within the query was too broad, could hold different meaning for different

people, or required collection of multiple data points (e.g., “Compare my running

stats from the same time last year” and “Is my work out better at my home gym or

commercial gym?”).

From the 205 total queries in the dataset, we find a large majority, 80% (164) of

queries, utilize explicit references to data attributes. Only 20% (41) of the queries

showcase implicit referencing. Implicit queries were less immediately data-driven

and often contained broad interest into a topic and the need to aggregate data from

multiple sources (e.g. “What’s the best exercise for me today?”). Queries with

implicit referencing of attributes may also present challenges with regard to pro-

viding appropriate response. No clear difference in the use of explicit or implicit

attribute referencing was seen for queries registered at different times within activ-

ity or when away from activity.

5.4.2 Aggregations

Aggregation references include words that would enable the conducting of a

mathematical transform on the data. This is common when performing data analy-

sis (e.g., obtaining the sum, count, average, etc.). Our exploration of aggregations

was first coded into the type of aggregation requested; see Figure 5.3. We found

five forms of aggregation and a sixth non-aggregation form: (i) Count (59, 29%)

(e.g., “How many runs have I completed thus far in 2021?”), (ii) Average (29,

14%) (e.g., “What is my average step count per day”), (iii) Min/Max (10, 5%)

(e.g., “What was my fastest kilometer in my run?”). Other synonyms include:

slowest, highest, lowest, peak, best, and worst. (iv) Total (4, 2%) (e.g., “How many

miles have I accumulated through walking, running, and biking over the course of

this year”?), (v) Variance (3, 2%) (e.g., “How much has my pace fluctuated during

my walk”), and (vi) N/A and Current value (97, 48%), where no aggregation is

necessary and a value is simply being requested (e.g., “What is my resting heart
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Figure 5.3: Counts of the aggregations (mathematical transforms of the requested

data) found within the queries. The aggregations are further noted by explicit and

implicit references.

rate?”).

We further explored aggregation references through either (i) explicit aggrega-

tion, where direct reference to an aggregation transform was used, (37, 18%) (e.g.,

“What’s my average walking pace per kilometer” → Average) and (ii) implicit ag-

gregation, when phrasing was used, (168, 82%) (e.g, “How long does it take after

a walk to get back to resting heart rate?” → Average and “How many calories did

I burn in the last 4 hours?” → Count). Notably, when we explore the aggrega-

tions through this lens, the vast majority of aggregations are performed utilizing

implicit requests. When looking at majority, only for average and min/max did

people utilize explicit referencing more than implicit referencing.
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5.4.3 Interrogatives

Figure 5.4: Counts of the interrogatives (elements used to express ques-

tions/commands and intent) found within the queries.

Interrogatives, or question words, can provide insight into the aggregation de-

sired, indicate questions versus commands, underscore query intent, and hint at

appropriate forms of output (e.g., show me compared to tell me). Figure 5.4 shows

the interrogatives coded. Of interest, over 60% of queries contain either “how” (77,

38%) or “what” (52, 25%) question interrogatives. These can be further broken

down into the interrogatives “how many” (53/77), often implying a count aggrega-

tion, and “what is/was” (38/52), often implying a single value calculation.

5.4.4 Filtering Mechanisms

Filtering of data is a common exploratory task (e.g., “Compare walking pace

September and October” filters the data to the months of September and October

while excluding other data). Four codes were used to differentiate filtering mecha-

nisms used within the queries: (i) N/A (42, 20%), where no filtering was needed as

the entire data related to the query would be used, (ii) Current (34, 17%) where the
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Figure 5.5: Counts of the filtering mechanisms found within the elicited queries

(elements use to filter a subset of all data collected).

current or most recent value would be filtered removing data collected in the past,

(iii) Time dependent (85, 41%), where a notion of time was used to filter data (e.g.,

“What was my highest heart rate in the last hour?”), and (iv) Activity dependent

(49, 24%), where an instance of an activity is used to filter data rather than an ex-

plicit notion of time (e.g., “What was my best kilometer during my run?”, “Show

me my heart rate chart from today’s gym session.”, or “Was the 1st km of my hike

faster than the last kilometer today?”).

Notably, activity dependent filtering is a subset of time dependent filtering,

however is referenced with respect to an activity or activities rather than the spe-

cific time period. The smartwatch is inherently a device that captures instances of

activity (e.g., tracking nightly sleep, individual runs or walks, when food/water is

consumed, when weighing yourself using a connected scale). Queries containing

activity-dependent filtering allow filtering to be accomplished naturally, by refer-

encing when the smartwatch was used to track data, without the need for a user to

remember or further explore specific times an event or activity occurred. Interest-

ingly, the number of queries containing activity dependent filtering shows increase
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after an activity. This even slightly eclipses time dependent filtering immediately

after an activity.

Table Table 5.1 provides a complete breakdown of the filtering, aggregations,

and data attributes; this table provides these relation to each other along with the

in-situ association as highlighted in Chapter 4.

79



Table 5.1: Counts of the codes for the attributes, aggregations, and filters are shown, delineated by the in-situ relation for

which the query was elicited. We note, that 5 queries contained both time and activity dependent filtering, as such the total

count for the filtering columns results in 210.

Attributes Aggregation Filtering

Explicit Implicit Explicit Implicit N/A Current Time Activity

Before

(24)

20 4 2 22 13 1 6 4

During

(38)

32 6 7 31 9 8 14 7
Yes

(107)

After

(45)

36 9 13 32 2 6 16 20

No

(98)

76 22 15 83 18 19 44 13

Totals 164 41 37 168 42 34 85 4980



5.4.5 Components of a Personal Health Data Query

Looking at the results together, four components can be seen to make up a

personal health data query on the smartwatch. These include the interrogative or

question word(s), the data subject or attribute(s), the aggregation term, and the

filtering mechanism. Importantly, however, not all are needed when querying data.

At a minimum, all queries in the dataset contain an interrogative and data subject.

This coincides with the results found by Rawassizadeh et al. [154]. Thus, some

queries do not contain aggregation or filtering terms, often implying exploration of

a current value or of all data captured (e.g., “What is my resting heart rate?”). This

is important for interaction of data on the smartwatch, as no matter the interaction

modality considered, we must obtain this information at a minimum. Furthermore,

we restate that the interrogative can be used as the aggregation term. As such, this

is not always explicitly required (e.g., “How many (→ count) steps did I take in the

past seven hours?” versus “What was my peak heart rate during my workout?”).

5.4.6 Response Expectations

The query provided can in fact also hint at the expected response type. As such,

to better understand the potential forms of output required, we further coded the

appropriate and expected response type for each of the queries in the dataset.

Throughout, we found four possible response types: 1) Value (115, 56.1%),

a single value response (e.g., What was my average heart rate in the last hour?

- would elicit a single average heart rate to be reported filtered by the condition

provided), 2) Open (41, 20.0%), a response requiring a list of data/information of

any size (e.g., In what workouts does my heart rate reach zone 5? - would elicit a

list of workouts for which the provided condition is true), 3) Binary (32, 15.6%),

a yes/no response (e.g., Is my heart rate higher than normal? - would elicit at

its lowest level a simple yes/no response), and 4) Range (17, 8.3%), comparative

two-value responses (e.g., What is my average heart rate on weekdays compared

to weekends? - would elicit the output of two unique average heart rates filtered by

the provided conditions).
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5.5 Discussion

5.5.1 Lay-Person Exploration of Personal Health Data

Throughout, we target a broader audience who are interested in exploring and

gaining insight from their personal health data. Our analysis is one of the few

to focus on lay-person queries. The majority of work in this area has focused

on individuals who are familiar with data exploration practices and tools (e.g.,

data analysts) [94, 183, 184], with to our knowledge only one work analyzing

lay-person queries for smartwatch data exploration [154].

Within our findings, the influence of lay-person exploration was most evi-

dent through implicit aggregation and activity dependent filtering. The majority

of queries within the dataset analyzed contained implicit aggregation, a vast dif-

ference from the only quarter of queries captured with data experts [184]. While

the work done by Rawassizadeh et al. [154] highlights both explicit and implicit

notions of time and location, this dimension is not quantified for comparison nor

discussed for aggregation. Furthermore, prior work has put focus on time depen-

dent filtering as this is a primary dimension of personal health data [98]; Rawas-

sizadeh et al. also suggest time as the only filtering mechanism [154]. However,

activity dependent filtering found in our analysis can be seen as a means for lay-

users to more easily recall events performed rather than specific times they were

performed. Both these implicit means of exploring data are understandably easier

for people, especially on the smartwatch where visual exploration is limited due to

the small-screen size and focus may be on a primary in-situ task at hand [14].

5.6 Summary

This chapter provides an understanding of the different components that com-

prise the queries desired for personal health data exploration on the smartwatch.

We identified several dimensions related to these queries, including the requested

data types, attributes, aggregation methods, filtering mechanisms, and interroga-

tives used. Our findings emphasize the need for more comprehensive and lay-user

access to a range of differing data aggregation and filtering options. By considering
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these insights, practitioners and application designers can develop better applica-

tions that meet users’ specific needs and preferences for interaction with personal

health data. The implications of this chapter provide valuable guidelines for fu-

ture works aimed at enhancing the utilization of smartwatches as effective personal

health tracking and exploration devices, including our own work within Chapter 7.
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Chapter 6

User Preferences of Voice
Assistant Answers to Personal
Health Data Queries

Continuing our focus on enabling interaction for such queries, this

chapter shifts attention to the complement of input: output. Specif-

ically, as there is plenty of smartwatch visualization research con-

ducted and guidelines proposed, we explore how to respond to per-

sonal health data queries through spoken, voice assistant, output. Spo-

ken output can provide an efficient and complementary means to re-

spond to personal health data queries, especially while on-the-go when

the visual system can be overloaded [19]. Work presented in this chap-

ter resulted in a publication in the conference on Conversational User

Interfaces [159]. The article was a collaborative effort among myself,

Yumiko Sakamoto, Jaisie Sin, and Pourang Irani. Yumiko Sakamoto

collaborated on study design, data analysis, and editorial work. Jaisie

Sin collaborated on study design and editorial work. Any mention of

‘we/our’ in this chapter refers to my co-authors.
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6.1 Introduction

The rapid integration of voice assistants (VAs) within an array of devices is

transforming the way we interact with technology. VAs now offer seamless inter-

action across standalone smart-speakers, smartphones, and wearables such as the

smartwatch. The current capabilities of VAs allow for the handling of general com-

mands (e.g., controlling entertainment devices) and answering of basic questions

(e.g., the current weather).

Now, pushing the boundaries of what a VA is capable of, we refer to the sto-

ried example provided in the introduction of this thesis. As Sam asks, ”How does

today’s pace compare to my last six hikes?” - the VA could respond with ”Your

pace today is slower than your average pace by 2 minutes and 28 seconds per kilo-

meter.” Currently, however, this level of question and answering through VA inter-

action is not possible, yet is understandably very plausible. Furthermore, research

has shown that it can even be beneficial to use natural language (i.e., auditory or

spoken) interactions when the visual system is overloaded [20]; this occurs often

while a person is in-situ and actively engaged in a workout or other activity.

Looking at past work in this area, research has focused on the use of VAs for ad-

dressing general health knowledge questions [2, 127] and for their use in healthcare

[50]. Furthermore, research has explored VA answer structures, specifically min-

imal, keyword, and full sentence, however only for common tasks and questions

[71]. Ultimately, however, we do not have an understanding of how VA answers

should be structured, specifically for personal health data questions. Uncertainty

about how to provide answers is one such element that limits the potential of VAs

to adequately respond to users’ growing personal information needs, and thus the

greater potential for databiting while on-the-go. This missing knowledge can even

factor into user satisfaction and adoption of these systems all together [175, 188].

In this chapter, we focus on the following research questions:

RQ1: How should voice assistant answers be structured to support

spoken responses to personal health data queries?

RQ2: How are voice assistants perceived as a tool to query personal
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health data compared to general voice assistant interactions?

To address this knowledge gap we implemented a browser-based pseudo-VA

which allowed for study participants to ask and receive answers to a variety of per-

sonal health data questions. Across two online studies, 82 participants interacted

with our VA, asking questions and receiving answers to a combined total of 30

unique question-answer pairs. Within our studies, we explored three answer struc-

tures (i.e., Minimal, Keyword, and Full Sentence), each paired with questions from

four personal health question response types (i.e., Open, Range, Binary, Value)

and six known personal health insight categories (i.e., Contextual, Preemptive and

Proactive, Goal and Performance, Combination and Comparison, Historical and

Trend, and Current Status).

We found that in contrast to general VA question and answers, where short

answers were preferred, participants preferred the Full Sentence answer structure

given the response types and insight categories studied. Moreover, Full Sentence

answers allowed for clarity in the answer when data was ambiguous, yet remained

efficient despite the longer mean response time compared with other answer struc-

tures.

Our contributions are two-fold:

C1: Two studies, utilizing a custom-built browser-based pseudo-VA,

allowing participants to explore personal health questions and answers

across a total of 30 unique personal health question-answer pairs. We

offer the implementation of our browser-based pseudo voice assistant

that is used within both studies.

C2: Comprehensive user preferences of different answer structures for

voice assistants in response to personal health data queries. We gather

empirical insights into perceived answer quality, behaviour, compre-

hensibility, efficiency, and preference for personal health data ques-

tions. The findings provide elementary guidelines that complement

known guidelines for current voice assistant question and answering

capabilities.
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6.2 Relevant Related Work

6.2.1 Interaction with Voice Assistants

Voice assistants (VAs) are quickly being adopted for use, now with over half

of Americans using a VA in their homes [143]. To provide reason for such adop-

tion, current research on natural language interaction (e.g., speech) has highlighted

its utility in facilitating micro and hands-free interaction [5], especially when the

visual system is overloaded (e.g., while tracking a walk) [19] and within various

simultaneous activities [151]. These reasons for using a VA fit perfectly within the

vision of databiting and the necessity for lightweight and transient exploration that

does not hinder an ongoing activity, but rather assists and provides complement.

As we interact with a VA using natural language, research understandably ex-

plores the idea of personification and human-likeness in VA answers and dialogue

[109], as well as social interactions [152]. However, in stark contrast to this, others

have highlighted a need for technical systems [53], rather than human. Notably,

increased human-likeness tends to increase trust and privacy concerns [27, 119],

concerns that are at the forefront for personal health data [191, 207]. The contrast

in human-like versus technical can greatly influence the experience of the VA in-

teraction. As such, it is not only important to understand answer structures, but

also necessary to continue to uncover preferences and perceptions as new VA in-

teractions, such as for personal health data queries, become possible.

6.2.2 Voice Assistants in Health Contexts

Conversational user interfaces (CUIs) encompass a variety of interactive sys-

tems designed to facilitate natural language and conversational interactions. CUIs

are an emerging means for people to gain general health-related information [2, 18,

127, 198], to self-report health and fitness data [121, 153], and to fill out health-

related forms when health literacy is low [101]. CUIs in health contexts can take

various forms, such as text-based chatbots, virtual assistants, and voice-activated

platforms [50, 104]. Each of these forms offer unique capabilities for supporting

health-related interactions and at times offer solutions to potential hurdles such as
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mispronunciation and recognition of medical terms and credibility [12, 146].

VAs, as a subset of CUIs, are becoming increasingly adopted as they are an em-

bedded technology in many of our smart devices. VAs in health contexts currently

allow users to query general health topics and symptoms [18], often providing links

to online sources. As personal health data monitoring and exploration becomes

more commonplace [35], along with a rise in Artificial Intelligence and Large Lan-

guage Models, the intersection of VA interaction and personal health data querying

will quickly become a reality. Despite this potential, current VA systems do not

fully leverage their capabilities for question-answering tasks. With little actively

working technology in this area, we largely do not know how a VA should answer

personal health data queries, or how a VA is viewed for such tasks.

6.2.3 Voice Assistant Answer Structures

Investigations into VA communication styles have often focused from user to

device. However, the feedback and response styles of the VAs not only play into

a major design principle [139], but also a critical role in users’ perceptions and

adoption of these devices [175]. Yet, the effect of machine-to-human expression

has been under investigated. For example, while factors like interruption [56] and

conversational repair [46] have been explored, to our knowledge, only one work

has explored answered structures for general VA use [71].

By exploring marketed VA answer practices as well as conducting a user study

to compare various answer structures, Haas et al. [71] provide a comprehensive

analysis of the experiences and user preferences regarding different VA answers.

They first found that commercial VAs opt to convey more humanistic and full sen-

tence answers for many common questions and commands. Only for home au-

tomation, where the outcome of the VA interaction is also noticeable within ones

environment, were shorter keyword answers used. Then, in their own user study,

Haas et al. found that minimal answers (those that provide the answer and no

other supplemental or contextual information) were preferred for most command-

based interactions while keyword answers (those that provide the answer and a

brief confirmation of the keyword in the request) were preferred for most query-
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based interactions. This highlights a more utilitarian use of a VA than is currently

recognized, where brief and basic answers suffice. Yet, many of the general use

questions and commands explored are not personal. More specifically, there is a

need for research to explore and understand people’s expectations regarding answer

structures when querying personal health data through VAs.

6.3 User Studies Methodology

Within two online user studies we used the same apparatus, procedure and data

collection described below for both, and derived from previous work [71]. We

follow the same procedure as previous work so that we can make direct compar-

isons and reflections between our findings, focused on personal health data ques-

tion and answers, and previously published findings, which focus on currently af-

forded question and answers as well as task-based commands.

6.3.1 Apparatus

We built a browser-based pseudo-VA using Javascript and the WebSpeech API7.

The WebSpeech API enables two important elements: (1) Speech recognition

(i.e., recognizing a personal health data question) and (2) Speech synthesis, where

speech (i.e., the answer to the question) can be vocalized, for which we used the

“Google US English Female” voice. We chose the female voice for its similarity

to the default voices current VAs use. The pseudo-VA used within the user studies

can be demoed in Google Chrome8. Furthermore, the underlying code provides

implementation details which can be used in future.

We utilize the term pseudo to describe our VA, as the functionality of our VA

was limited to only handle questions desired within our user studies. As such,

the VA was not fully functional as we would expect a commercial VA to be (e.g.,

Google Assistant, Siri, Amazon Alexa, etc.). While this limits capability, it pro-

vides experimental control. During interaction with our pseudo-VA, the partici-

pant’s question would be recognized and then processed by checking for keywords
7https://wicg.github.io/speech-api/
8https://vaphdqa.github.io/vaphdqa/
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(and varying synonyms) specific to each question. Only when our pseudo-VA rec-

ognized all required keywords, was the appropriate answer vocalized. If recogni-

tion could not be made (e.g., required keywords were missing) a response would

encourage the participant to follow the prompt given and to try again.

When interacting with our pseudo-VA, a button on-screen was used to trigger

the start of recognition, rather than utilizing keyword detection as many commer-

cial VAs do. This design choice was done for privacy reasons. As such, partici-

pants had control of when recognition would begin, with recognition ending once

the WebSpeech API recognized a natural stop in the question spoken. Further-

more, the text in the button would change to inform the participant when the VA

was listening.

6.3.2 Procedure

Each study comprised three distinct stages: an introduction, the main trials, and

demographic surveys. The procedure, VA recognition, and data collection were re-

fined across two separate pilot phases for each study. In the first pilot phase, a

single participant took part in the study while sharing their screen on Zoom and

providing think-aloud feedback throughout. The second pilot phase involved three

participants, none of whom took part in the first phase, who mirrored the proce-

dures that our main study participants would follow. This process allowed us to

refine the methodology and address any potential issues.

Within each of the studies, we include two attention check questions. One

question was built into the pseudo-VA, mimicking a typical study trial. Specif-

ically, all participants had to ask about their calorie intake for the day, to which

the pseudo-VA responded with instructions that needed to be followed on the next

screen. The second attention check question was simply slotted within a demo-

graphic survey, asking participants to choose a specific response.

Throughout the studies, the pseudo-VA was embedded into a larger Qualtrics

survey and opened in Google Chrome. Once open, participants proceeded through

the survey, as described below. The study procedure was approved by our insti-

tution’s ethics review board. All participants provided informed consent prior to
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starting a study.

Study Introduction

Before starting the main trials, participants were guided through a study intro-

duction process, designed to optimize interaction and comfort with the browser-

based pseudo-VA and the study in general. The study introduction comprised of

the following elements: (1) Voice input and output verification. Participants could

test their input and output by continually interacting with the pseudo-VA, using

preset and generic questions. (2) Study task. We provided a brief overview of the

study’s context and tasks. (3) Practice trials. Participants experienced three trials,

during which they were prompted to check their calendar for the following day.

Note, as with the main trials, we did not have access to a participant’s personal

data; throughout, generic data was used when providing responses. (4) Personal

health data preference. To further enhance interest and focus within our study, we

asked participants to choose between heart rate and step count data as their pre-

ferred question and answer topic for the remainder of the study. These topics for

personal health data exploration were chosen for their popularity [3, 156], and can

be seen as topics that are of interest throughout many daily contexts [157].

Main Trials

The main trials in our study were structured into blocks, with each block focus-

ing on questions requiring a specific response type (i.e., Open, Range, Binary, and

Value) or pertaining to a specific category of personal health data (i.e., Contextual,

Preemptive and Proactive, Goal and Performance, Combination and Comparison,

Historical and Trend, and Current Status) in each of Study 1 (see Table 6.1) and

Study 2 (see Table 6.2) respectively.

To ensure balance and minimize potential order effect, both the question blocks

and answer structures within a single question block were ordered using a Latin

Square design. Participants were randomly assigned to a question block order-

ing and for each question block randomly assigned an answer structure ordering.

Throughout, we ensured as best we could that an equal number of each order for
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both the questions and answers was shown across all participants in the study. This

study design allowed for a systematic exploration of how different answer struc-

tures performed across various dimensions of personal health data queries.

Trials were grouped in threes, corresponding to each question block. Partic-

ipants asked the same question for each trial in a question block while receiving

each of the three differently structured answers. We used a repeated measures

design, in which each participant had to ask each of the four or six different ques-

tions for each of the three answer structures. This results in a total of 12 or 18

question/answer interactions (trials) for each participant, for Study 1 and Study 2

respectively.

During each trial, participants were prompted to ask a personal health data

question using their own words. After providing the question, participants heard

an answer given by the VA. Following a successful interaction with the VA for

each trial, participants were automatically directed to complete the User Experi-

ence Questionnaire Plus (UEQ+) [100, 167]. The UEQ+ survey provides insights

into participants’ subjective experiences and satisfaction levels with the voice as-

sistant answer structures.

Following the work which created the UEQ+ survey for voice assistants [100],

and previous work [71], we paired two semantic scales to compose a single expe-

rience quality factor. We chose two semantic differentials with the highest found

loading from three scales: 1) Behaviour, consisting of the scales artificial - natural

and unlikable - likeable, 2) Comprehensibility consisting of the scales complicated

- simple and unambiguous - ambiguous, and 3) Efficiency consisting slow - fast

and inefficient - efficient. Finally, we incorporated a fourth scale: 4) Quality, which

consisted of the scales with the third and fourth highest loading, yet still recom-

mended by the creators [100]. The Quality scale consisted of the scales unintel-

ligent - intelligent and inappropriate - suitable. We opted for these scales as the

scales with the highest loading for Quality were not helpful - helpful and useless

- useful. Through preliminary discussion, we felt these scales required the use of

actual personal health data for a participant to fully evaluate these semantics.

After completing a question block, participants were asked to rank-order their

preference for the three answer structures heard during that block. This ranking
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task aimed to elicit participants’ subjective preferences with a forced response akin

to selecting a single option if given the choice on their own device.

It is important to again note that all answers provided during the trials were

generic, and no personal health data from participants was used in generating VA

answers. This approach ensured consistency and privacy in the study design while

still allowing for a thorough exploration of participants’ preferences with respect

to VA answer structures for personal health data queries.

Surveys and Open Feedback

Our study incorporated surveys and open feedback to gather insights into par-

ticipants’ demographics, personality traits, and preferences regarding voice assis-

tant usage. We gathered information about age, gender, background, VA usage,

and personal health data collection practices. Additionally, participants completed

the Ten-Item Personality Inventory (TIPI) [67] to assess personality traits and the

Attitudes For Technology Interaction (ATI) [64] scale to assess their attitudes and

comfort with technology. We also explored attitudes towards voice assistants for

both general and personal health data use, separating these surveys to mitigate

carry-over responses. Finally, participants were given the opportunity to provide

open feedback to express their thoughts, suggestions, and/or concerns.

6.3.3 Question Answer Structures

The questions prompted for participants to ask within each study were derived

from a public dataset of personal health data queries captured in-the-wild from ex-

perienced smartwatch users [157]. The questions within our studies were carefully

selected to represent the elicitation of different response types in Study 1 and var-

ious desired categories of personal health insights in Study 2. Within each study

section below, we further highlight the questions used and how they were derived.

For both studies, the questions were answered using three answer structures:

Minimal, Keyword, and Full Sentence. These answer structures have been utilized

in previous work [71], and mimic the Full and Brief options offered by Google’s

Assistant. Minimal answers solely contain the information required to answer the
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question. Keyword answers provide the answer and confirmation of the question

asked. Full sentence answers provide full sentence responses emulating human-

like sentence structure. Notably, Minimal and Full Sentence answer structures

follow humanistic response behaviours, while Keyword does not. As we allowed

for both step count and heart rate as question topics to promote interest and en-

gagement within the study, we aimed to ensure as much consistency as possible

between the questions and answers for either data source. This included ensuring

as much commonality between answers as possible while also ensuring answers

were of similar lengths; see Table 6.1 and Table 6.2 for all questions and answers

used (for both step count and heart rate topics). No matter the question topic cho-

sen by participants, each participant saw the same number of question and answer

trials during their respective study (i.e., 12 in Study 1 and 18 in Study 2).

6.3.4 Participant Recruitment

Recruitment of participants was done through Prolific9. Prior to participation,

potential participants completed an eligibility survey to ensure they met our inclu-

sion criteria: participants were required to (1) Have their first language be English.

Therefore, answer structures could be properly evaluated by native speakers; (2)

Have used a VA before. As such, participants held experiences either good or bad

with the use of VAs and their answers; (3) Currently collect and/or explore per-

sonal health data. By having experience with personal health data, participants

could have defined expectations and preferences.

When partaking in the main study, we asked participants to place themselves

in a room with as little distraction as possible. We further required the use of

a desktop/laptop computer with Google Chrome installed and for participants to

have working microphone and speaker/headphones. No matter their responses, all

participants who took part were paid 0.25 GBP for completing the eligibility and

6.5 GBP for completing the study.

9https://www.prolific.com/
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6.3.5 Data and Analysis

The data from each study is analyzed across four key areas: (1) UEQ+ scores

for each question-answer pair, (2) rank order preferences, (3) attitudes towards

VAs, and (4) open feedback.

Important differences are highlighted for each study below with means and

the confidence interval boundaries listed in text and graphically presented within

figures. Throughout, we opt to utilize confidence intervals rather than relying on

p-values. Graphically presenting confidence intervals allows us to systematically

assess any effects at play while also gauging practical significance [47, 54]. Re-

porting on confidence intervals rather than p-values has become increasingly pop-

ular in HCI literature [11]. Confidence intervals offer greater understanding for a

broader audience and do not suffer from the illusion of truth sometimes provided

by a p-value [54]. As no statistical testing is being performed, we explicitly do not

utilize significance terminology. Rather we find and report on differences through

confidence intervals which do not overlap [47, 54]. Before calculating the means

and confidence intervals all outliers for each pairwise analysis were removed as

any data point outside three standard deviations.

As the creators of the UEQ+ scale do not test for inter-item reliability, we

calculated the Cronbach’s α for each pairwise comparison using .70 as a cutoff

[140]. When the α did not reach the cutoff for any UEQ+ scale, we report on the

combined UEQ+ scale, while further exploring its semantic differentials separately.

6.4 Study 1 - Response Types

6.4.1 Questions

For Study 1, the prompted questions were categorized by the type of response

the question would elicit. The possible response types, as seen in Chapter 5,

are: 1) Value, a single value response, 2) Open, a response requiring a list of

data/information of any size, 3) Binary, a yes/no response, and 4) Range, compar-

ative two-value responses.

Table 6.1 shows all questions and answers used within the study. Answers took
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an average of 2.8, 4.5, and 6.3 seconds to convey to the participant for each of

Minimal, Keyword, and Full Sentence answer structures respectively.
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Table 6.1: Questions and answers used in Study 1. The forward slash denotes the separation between the choice of heart rate

or step count topics, one of which was chosen by the participant for use throughout the study.

Response
Type

Expected Question Minimal Keyword Full Sentence

Value
What was my average heart rate in the last
hour? / What was my step count in the last
hour?

71 beats per minute / 1,375
steps

Average heart rate last hour, 71 beats per
minute / Step count last hour, 1,375 steps

In the last hour, your average heart rate was 71 beats
per minute / In the last hour, your step count was
1,375 steps

Open
In what workouts does my heart rate reach
zone five? / In what workouts does my
step count reach 2,000 steps?

Indoor running, outdoor
cycling, and rowing / Indoor
running, outdoor running, and
hiking

Workouts reaching zone five, indoor
running, outdoor cycling, and rowing /
Workouts reaching 2,000 steps, indoor
running, outdoor running, and hiking

In the past, indoor running, outdoor cycling, and
rowing workouts have brought your heart rate into
zone five / In the past, you have reached 2,000 steps
during indoor running, outdoor running, and hiking
workouts

Binary
Is my heart rate higher than normal? / Is
my step count higher than normal?

Yes / Yes
Yes, heart rate higher than normal / Yes,
step count higher than normal

Your current heart rate is higher than your normal
heart rate / Your current step count is higher than your
normal step count

Range

What is my average heart rate on
weekdays compared to weekends? / What
is my average step count on weekdays
compared to weekends?

85 beats per minute compared
to 76 beats per minute / 9,820
steps compared to 10,680
steps

Weekdays, 85 beats per minute.
Weekends, 76 beats per minute /
Weekdays, 9,820 steps. Weekends, 10,680
steps

Your average heart rate during the week is 85 beats
per minute. While on the weekends, your average
heart rate is 76 beats per minute / Your average step
count during the week is 9,820 steps. While on the
weekends, your average step count is 10,680 steps

Mean and Standard Deviation of
Response Times (seconds):

M=2.6, SD=1.3 / M=3.0,
SD=1.6

M=4.2, SD=1.1 / M=4.8, SD=1.4 M=5.7, SD=2.0 / M=6.7, SD=2.4
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6.4.2 Participants

Thirty-four participants took part, with one participant failing the attention

checks. Of the 33 participants whose data we used for analysis their ages ranged

from 18 to 63 years old (M = 35.0, SD = 11.7; 24 Females, 9 Males). Furthermore,

19 participants self-identified as White, nine as Black/African, three as Hispanic,

and two as Asian. Twenty-two (22) participants indicated they use Google’s Assis-

tant, 17 use Apple’s Siri, 11 use Amazon’s Alexa , six use Samsung’s Bixby, and

two use Microsoft’s Cortana. As marketed VAs offer similar responses [71], we

were not concerned with bias from using a specific VA. Fifteen (15) participants

stated using a voice assistant more than once per day, two once per day, eight a

few times a week, two once a week, and six less than once per week. On average,

participants had been collecting personal health data for 56.5 months (SD = 32.4

months). On average, Study 1 took 24.9 minutes to complete (SD = 11.2 minutes).

Eleven (11) participants chose heart rate while 22 participants chose step count as

their data type to explore.

6.4.3 Results

Quality, Behaviour, Comprehensibility, Efficiency

Mean participant ratings with 95% confidence intervals for answer quality, be-

havior, comprehensibility, and efficiency are shown in Figure 6.1.

Quality For answer Quality (a composite of helpfulness and usefulness), differ-

ences were observed within Range, Binary, and Value response types, but not for

Open. Within the Range response type, participants rated the Full Sentence an-

swer structure as having the highest Quality (M = 6.36, CI [6.11, 6.61]) compared

to both Keyword (M = 5.77, CI [5.48, 6.07]) and Minimal (M = 4.94, CI [4.56,

5.32]). Furthermore, Keyword answers were rated higher than Minimal. For the

Binary response type, the Full Sentence answer structure received higher ratings

(M = 6.11, CI [5.84, 6.38]) compared to both Keyword (M = 4.95, CI [4.56, 5.35])

and Minimal (M = 4.38, CI [3.79, 4.97]). For the Value response type, participants
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rated the Keyword answer structure lower (M = 5.74, CI [5.43, 6.06]) when com-

pared to the Full Sentence answer structure (M = 6.33, CI [6.09, 6.57]). Only when

the response type was Open, the answer structure did not influence the perceived

Quality.

We compared the quality ratings of Keyword answer structures across the four

response types. In the Binary response type, Keyword answers were rated lower

(M = 4.95, CI [4.56, 5.35]) when compared to other response types. Similarly,

for the Minimal answer structure, Binary responses received the lowest rating (M

= 4.38, CI [3.79, 4.97]) when compared to Open and Value response types. Fur-

thermore, Full Sentence answers consistently received higher ratings across all re-

sponse types, suggesting a potentially higher perceived quality.

Behaviour In examining the answer Behaviour (a mean composite of natural-

ness and likability), a similar pattern for Full Sentence was evident. Regardless

the response type, Full Sentence always yielded the highest ranking; differences

between Full Sentence and the other answer structures within each response type

were found for all except Value. Moreover, the means for Full Sentence did not

vary across the four response types. This was consistent with both other two an-

swer structure types (i.e., the Behaviour ratings were not influenced by Response

Type). Thus, to further explore, we created mean scores for each answer structure

type. As anticipated, the Full Sentence structure yielded the highest mean (M =

6.19, CI [5.99, 6.41]) while Minimum Sentence (M = 5.28, CI [4.97, 5.59]) and

Keyword (M = 5.57, CI [5.32, 5.80]) did not vary.

Comprehensibility In terms of answer Comprehensibility (a mean composite

of simplicity and ambiguity), only one answer structure effect was found across

response types. For the Range response type, Full Sentence and Keyword answer

structures were seen as equally comprehensible while Minimal was seen as the

least comprehensible (M = 5.06, CI [4.56, 5.56]). For other response types, the

answer structure did not affect the level of comprehensibility. Noticeably, using a

Minimal answer structure for both Range (M = 5.06, CI [4.56, 5.56]) and Binary

(M = 5.23, CI [4.67, 5.79]) response types was seen as less comprehensible than if
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(a) (b)

(c) (d)

Figure 6.1: Study 1 mean UEQ+ ratings with 95% confidence intervals: Quality

(a), Behaviour (b), Comprehensibility (c), and Efficiency (d). Ratings are com-

pared by the response types (Value, Open, Binary, Range) and answer structures

explored in the study.
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(a)

(b)

Figure 6.2: Study 1 mean UEQ+ ratings with 95% confidence intervals for a) Com-

prehensibility - separated by simplicity and ambiguity; and b) Efficiency - separated

by speed and efficiency. Ratings are compared across the response types (Value,

Open, Binary, Range) and answer structures explored in the study.
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used for Open and Value.

The level of Cronbach’s α for Comprehensibility was 0.66. As such we sep-

arated the semantic differentials used and further explored complicated - simple

and ambiguous - unambiguous separately; see Figure 6.2a. Differences across the

semantic differentials are present for the Minimal answer structure in the Binary

response type. More specifically, the Minimal answer was rated as being highly

simple but is different when compared to ambiguity, suggesting the response is

simple yet ambiguous.

Efficiency For answer Efficiency (a mean composite of efficient and fast), no

differences were found.

However, the level of Cronbach’s α for Efficiency was 0.65. As such we sepa-

rated the semantic differentials used and further explored slow - fast and inefficient

- efficient separately; see Figure 6.2b. Full Sentence answers were rated as more

efficient than they were fast for the Range, Binary, and Value response types. This

suggests that while an answer does not have the fastest mean response times, as is

the case with Full Sentence, they are still viewed as efficient by participants.

Interestingly, we realized that the sentence structure did not affect the perceived

speed. VA’s answers using Full Sentence, Keyword, and Minimal structures were

perceived equally fast regardless of the actual response time (see Table 6.1 for

mean response times).

Preference and Attitudes Towards Voice Assistants

Participants generally favored the Full Sentence answer structure; see Fig-

ure 6.3a. If Full Sentence answers were not preferred, then Minimal was often

the preferred answer structure. This preference pattern suggests that participants

prioritize responses that exhibit human structuring of answers. Notably, while par-

ticipants demonstrated clear preferences for the Full Sentence answer structure

throughout, only Range and Binary saw the majority of participants chose Full

Sentence as their preferred answer structure. This is likely due to a need for addi-

tional context and clarity within these response types. In contrast, Value and Open
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(a) (b)

Figure 6.3: Participant’s preference of answer structure for each response type

(Value, Open, Binary, Range) (a). Participant’s perceptions of voice assistants (b).

response types allow for implicit interpretation and internal verification given an

answer (i.e., if asking what workouts a person took 2000 steps within, cycling is an

obvious wrong answer). This internal verification leads participants to perceive a

slightly lesser need for Full Sentence responses; instead, favoring greater flexibility

and brevity in the answer structure.

Participants perceived voice assistants for personal health data exploration and

general use similarly, indicating a consistent perception across these question do-

mains; see Figure 6.3b. Interestingly, participants rated highly that a VA both was

viewed as a technical system and should prioritize efficiency. Attributes related to

human likeness and social interaction were not as strongly desired, with a VA so-

cial companion being even less preferred than human likeness. This suggests that

participants value technical capabilities and efficiency in VAs, and may not neces-

sarily expect or desire human-like or social qualities (e.g., as a trainer or coach).

Open Feedback

Across 18 unique comments, the open feedback provided by participants re-

vealed three main topics. Firstly, two participants expressed a newfound interest

in utilizing voice assistants for personal health data exploration. Second, regarding
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the study procedures, comments were generally positive, with seven participants

expressing enjoyment and satisfaction. However, one participant suggested a need

for a slower speed during interactions with the voice assistant. Additionally, two

participants suggested the use of a different voice, specifically male, during inter-

actions; no other interactive comments, such as recognition issues were mentioned.

Finally, in terms of preferences, participants interestingly expressed diverse and op-

posing opinions. Two participants suggested favoring concise and clear responses,

while another further mentioned they found human-like responses to be unsettling.

Conversely, three participants preferred longer answers, particularly to confirm that

the voice assistant understood their questions and attributing human-like qualities

to these responses.

6.5 Study 2 - Insight Categories

In our second study, we focus on insight categories of personal health data

questions rather than broader response types. Notably, a question asked within a

personal health data insight category can result in most response types, depending

how the question is asked. Given the very few differences in UEQ+ scores be-

tween answer structures in both Value and Open responses in Study 1, we extend

Study 1 by choosing to study Value responses in Study 2. This decision was driven

by the versatility of Value responses, which are applicable across all insight cat-

egories, whereas Open responses are not. This study then offers a more nuanced

understanding of user preferences in voice assistant answers for personal health

data questions.

6.5.1 Questions

The prompted questions were chosen to represent known personal health in-

sight categories, both from previous work [3, 29? , 30] and that of our own find-

ings in Chapter 4. These categories include: 1) Current Status (CSV), derived

from a current measured value, 2) Historical and Trend (HT), provides insight

into past data, 3) Combination and Comparison (CC), derived from combin-
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ing/comparing data sources, time periods, and/or activities, 4) Goal and Perfor-
mance (GP), derived from user goals and performance metrics, 5) Preemptive and
Proactive (PP), provides insight into a future action, and 6) Contextual (CT), pro-

vides context to gain insight. When choosing questions from within our previously

captured dataset, we first opted for questions that were categorized into a single

insight category. However, we note that some insight categories overlap with the

Historical and Trend category.

Answers took an average of 1.8, 3.0, and 4.0 seconds for Minimal, Keyword,

and Full Sentence answer structures respectively. As per our study goal, all answers

invoked a Value response type. All questions and answers used within this study

can be seen in Table 6.2.
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Table 6.2: Questions and answers used in Study 1. The forward slash denotes the separation between the choice of heart rate

or step count topics, one of which was chosen by the participant for use throughout the study.

Insight
Category

Expected Question Minimal Keyword Full Sentence

Current Status
(CSV)

What is my current heart rate? / What is
my current step count?

68 beats per minute / 7,350
steps

Current heart rate, 68 beats per minute /
Current step count, 7,350 steps

Your heart rate is currently at 68 beats per minute /
Your step count is currently at 7,350 steps

Historical and
Trend (HT)

What was my average daily heart rate last
week? / What was my average daily step
count last week?

78 beats per minute / 10,270
steps

Average daily heart rate, 78 beats per
minute / Average daily step count, 10,270
steps

Your daily average heart rate last week was 78 beats
per minute / Your daily average step count last week
was 10,270 steps

Combination and
Comparison
(CC)

Is my heart rate different from my
average? / Is my step count different from
my average?

Higher than average / Higher
than average

Current heart rate, higher than average /
Current step count, higher than average

Your current heart rate is higher than your average
heart rate / Your current step count is higher than your
average step count

Goal and
Performance
(GP)

Which day of the week is my heart rate
the highest? / Which day of the week is
my step count the highest?

Saturdays / Saturdays
Highest heart rate, Saturdays / Most steps
taken, Saturdays

Your heart rate is the highest on Saturdays / Your step
count is the highest on Saturdays

Preemptive and
Proactive (PP)

How long should I control my breathing to
get to my resting heart rate? / How far
should I walk to get to 10,000 steps?

Two minutes / 2.5 kilometres
To reach your resting heart rate, two
minutes / To reach 10,000 steps, 2.5
kilometres

To reach your resting heart rate, you should control
your breathing for two minutes / To reach 10,000
steps, you should walk a distance of 2.5 kilometres

Contextual (CT)

Is my heart rate lower in the morning,
afternoon, or evening? / Is my step count
lower in the morning, afternoon, or
evening?

Evening / Afternoon
Lowest heart rate, evening / Lowest step
count, afternoon

Your heart rate is the lowest in the evening / Your step
count is the lowest in the afternoon

Mean and Standard Deviation of
Response Times (seconds):

M=1.6, SD=0.4 / M=1.9,
SD=0.7

M=2.7, SD=0.4 / M=3.2, SD=0.7 M=3.6, SD=0.8 / M=4.3, SD=1.0
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6.5.2 Participants

Of the 52 participants who took part, three participants were removed for not

passing our attention checks. Of the 49 participants whose data we used for analy-

sis their ages ranged from 18 to 67 years old (M = 34.5, SD = 11.2; 30 Females, 19

Males). Furthermore, 31 participants self-identified as White, 13 as Black/African,

one as Hispanic, one as Asian, two as Multiracial, and one as Middle Eastern.

Twenty-eight (28) participants indicated they use Google’s Assistant, 23 use Ap-

ple’s Siri, 26 use Amazon’s Alexa, five use Samsung’s Bixby, and four use Mi-

crosoft’s Cortana. Twenty (20) participants stated using a voice assistant more

than once per day, five once per day, 16 a few times a week, three once a week,

and five less than once per week. Participants had been collecting personal health

data for an average of 51.5 months (SD = 34.2 months). On average, Study 2 took

24.9 minutes to complete (SD = 9.4 minutes). Ten (10) participants chose heart

rate while 39 chose step count as their data type to explore.

6.5.3 Results

Quality, Behaviour, Comprehensibility, Efficiency

Mean participant ratings with 95% confidence intervals for answer quality, be-

haviour, comprehensibility, and efficiency are shown in Figure 6.4.

Quality Within insight categories, no differences in perceived quality are seen for

Minimal and Keyword answer structures. However, Full Sentence shows a higher

mean Quality for Contextual (M = 6.15, CI [5.91, 6.38]) and Goal Performance

(M = 6.31, CI [6.11, 6.5]) insight categories compared to other answer structures.

As well, Full Sentence (M = 5.94, CI [5.7, 6.18]) shows a higher quality than

Minimal (M = 5.15, CI [4.81, 5.5]) in the Combination and Comparison insight

category. Notably, across insight categories, there are no differences for each of the

individual answer structures, suggesting that the insight category does not change

perceived Quality of an answer structure.
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(a) (b)

(c) (d)

Figure 6.4: Study 2 mean UEQ+ ratings with 95% confidence intervals: Quality

(a), Behaviour (b), Comprehensibility (c), and Efficiency (d). Ratings are com-

pared by the insight categories (Current Status and Value (CSV), Historical and

Trend (HT), Combination and Comparison (CC), Goal and Performance (GP), Pre-

emptive and Proactive (PP), and Contextual (CT)) and answer structures explored

in the study.
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Figure 6.5: Study 2 mean UEQ+ ratings with 95% confidence intervals for Com-

prehensibility - separated by the simplicity and ambiguity. Ratings are compared

across the insight categories (Current Status and Value (CSV), Historical and Trend

(HT), Combination and Comparison (CC), Goal and Performance (GP), Preemp-

tive and Proactive (PP), and Contextual (CT)) and answer structures explored in

the study.

Behaviour In parallel to Study 1, we once again noticed a general trend wherein

Full Sentence resulted in the highest scores for Behaviour (naturalness and likabil-

ity). However, Minimal Sentence and Keyword, which generally scored lower than

Full Sentence, did not vary from one another.

Comprehensibility The level of Cronbach’s α for Comprehensibility was 0.49.

Thus, we investigated the semantics (complicated - simple and ambiguous - unam-

biguous) independently; see Figure 6.5. Noticeably, as in Study 1, it is the Minimal

answer structure which provides differences comparing across the two semantics

in the Contextual, Goal and Performance, Combination and Comparison, as well

as Historical and Trend insight categories. Each time the answer is rated as more

simple while being ambiguous.
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(a) (b)

Figure 6.6: Participant’s preference of answer structure for each insight category

(Current Status and Value (CSV), Historical and Trend (HT), Combination and

Comparison (CC), Goal and Performance (GP), Preemptive and Proactive (PP),

and Contextual (CT)) (a). Participant’s perceptions of voice assistants (b).

Efficiency For Efficiency (a mean composite of “efficient” and “fast”) no differ-

ences were found. The answer structure did not influence the levels of perceived

efficiency. No other effects were found.

Preference and Attitudes Towards Voice Assistants

As with Study 1, we again see the Full Sentence answer structure as being the

preferred majority for the remaining insight categories. Only for the Current Status

insight category is this less pronounced. As complexity in the question increases,

from that of a Current Status question, Full Sentence seems to be preferred mainly

for its Quality and Behaviour. Finally, perceptions of VAs across both studies were

comparable.

Open Feedback

Across 19 unique comments the same three topics arose from Study 1. First,

three participants expressed an interest in using a VA for personal health data ex-

ploration. However, two participants shared that they prefer to perform visual data
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analysis. These comments are important; our aim is not to replace visual data

analysis. Instead, our work aims to diversify approaches to explore personal health

data. Second, nine study procedure comments highlighted that the study went well.

One participant mentioned the VA could slow down its answers while only three

participants expressed the VA was sensitive which caused some interpretation is-

sues throughout (sensitivity was expressed as being due to background noise, a

learned accent, and an illness influencing speech). Finally, only one participant

commented that they preferred concise and clear answers so as minimize the time

taken for the interaction.

6.6 Discussion

6.6.1 Implications for the Design of VA Interactions for Personal
Health Data Queries

Comparisons with General VA Interactions

Our results indicated that users preferred Full Sentence answers for their per-

sonal health data queries. This runs counter to prior work, which has suggested that

Minimal and Keyword responses are ranked positively, and sometimes preferred,

for common VA tasks (i.e., knowledge queries, home automation, reminders, cal-

endar queries) [71]. We believe this discrepancy arises due to the brevity of Min-

imal and Keyword responses which fall short in conveying the level of compre-

hension required for many personal health data queries. For example, if a person

asks ”What is on my calendar tomorrow?”, the VA could respond using a Minimal

answer structure, stating ”Lunch with Tyler, 1PM. Games with Danica, 7PM.” The

content in the answer itself provides a connotation of calendar events and does not

produce an answer that is ambiguous.

In contrast, if a person asks ”What is my average daily step count in the last

week?”, providing a Minimal answer, such as ”10,320 steps”, does little to convey

that the question was properly understood. Many other possibilities exist for a

similar answer (e.g., average daily step count in the last month or current step

count.) Such ambiguity has been previously noted as a barrier in using personal
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health data for clinical purposes [196], and now appears to be a common barrier

for end-users exploring their own personal health data.

These findings highlight the importance of tailoring answer structures to spe-

cific questions, both general and health-related. Furthermore, contextual informa-

tion plays a key role in VA personal health data exploration, where users compre-

hend the information provided holistically, rather than focusing solely on single

numerical or categorical values. As such, design considerations for VA personal

health data interactions should prioritize confirmation and inclusion of key aspects

of the data.

Efficient Full Sentence Answers

Despite being longer with respect to response time, Full Sentences were per-

ceived as equally efficient as Minimal and Keyword answers. We contemplate

several reasons for this observation. First, contextual information provided within

a Full Sentence may contribute to a more comprehensive understanding of the an-

swer, thereby reducing the need for follow-up questions or clarification. This can

ultimately enhance efficiency, even if individual responses take longer. Second,

the context in which the answer is given may influence its perceived efficiency.

In distracting environments, concise responses may be preferred, while in quieter

settings, more detailed answers may be deemed appropriate. Thus, the threshold

of an efficient answer may vary depending on the situational context, allowing for

flexibility in response length without compromising perceived efficiency.

Not only do our findings indicate that Full Sentence is perceived to be efficient,

but they suggest that there may be room to augment Full Sentence answer content

without sacrificing perceived efficiency. This is due to the fact that we observed

that participants feel Full Sentence answers were equally as fast as Keyword and

Minimal answers. Looking ahead, leveraging the capabilities of Full Sentence

answers could allow for serendipitous information, akin to visual data exploration.

For example, if a person asks “What is my average daily step count in the last

week?”, the VA could provide a Full Sentence answer stating, “Your average daily

step count in the last week is 10,320 steps. This is higher than the previous week,
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keep it up!”

Moreover, future investigations could aim to enhance the depth of information

conveyed, the number of data points included, and/or the influence of certain an-

swers to enrich user interactions with VAs. For example, if a person asks ”Is my

heart rate lower in the morning, afternoon, or evening”, the VA could respond with

”Your heart rate is the lowest in the evening, and is roughly 15 beats per minute

lower than other times of day.” Each of these areas of exploration should explore

the context in which VA interactions take place (i.e., at home or while on a walk).

Future work in these areas can build from the results found in our work while

then aiming to provide more comprehensive guidelines for personal health data

questions and answers, allowing for VA interactions that suit people’s needs and

preferences and could provide greater influence.

6.6.2 Human Emulation and Unwavering Perceptions

Our results highlighted unwavering and confident perceptions within both of

our studies for the use of VAs for personal health data question and answering.

This can be seen in the highly similar responses captured in our VA perception

survey questions (see Figure 6.3b and Figure 6.6b, and follow the results of previ-

ous work exploring general VA use [71]. As seen from this reported data, striking

a balance between technicality and efficiency, while providing answers that em-

ulate full sentences (and therefore human likeness) is key. Importantly, however,

we must be cognizant that VA interactions should remain to invoke as little social

interaction as possible (e.g., the VA should not emulate a fitness coach). Notably,

VA responses which emulate human behaviour, in part conveyed through Minimal

and preferred Full Sentence answer structures, have been shown to raise people’s

expectations of the VA [115].

While expectation and capability may be a concern in the earlier life cycles of

VAs, rapid improvements to VA performance will likely mitigate these concerns

over time. Of more interest, is that human-like responses can lead to incorrect and

inappropriate use of a VA [160]. Furthermore, trust and privacy become concerns

when the VA is seen as increasingly human-like [27, 119], a concern that is ampli-
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fied with respect to personal data [191, 207] over that of general knowledge (e.g.,

the weather or population of the USA). Therefore, we encourage designers of VA

technologies to pay close attention to the balance required to accommodate these

preferences.

6.6.3 Comparisons With Commercial Personal Health Data Question
and Answering

To better situate this chapter’s findings we once more explore current capabil-

ities with respect to VA personal health data question and answering. As such, we

again asked Siri a range of personal health data questions. As functionality is still

limited (i.e., Siri can not answer many of the questions within our dataset and this

our study), we explored questions, and slight variations of questions promoted by

Apple10. Notably, the use of Siri for the exploration of personal health data is cou-

pled with a display, rather than through a standalone device (e.g., in a standalone

smart speaker and as seen in our study). As such, we provide this information for

discussion purposes only.

10https://tinyurl.com/siriphdqa
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Table 6.3: Recorded personal health data question and answers using Siri on an iPhone 14 Pro running iOS 17.3.

Question Vocal Response
Supplementary
Information Displayed

What is my current step count? [Step Count] steps
Steps
Today

What’s my heart rate? As of February 2, 2024 11:48 AM, it was 77 BPM
Heart Rate
[Month] [Day] [Year] [Time]

How far did I walk yesterday? [Distance] km
Walking + Running Distance
Yesterday

How far have I walked this
week?

[Distance] km

[Distance] km Daily Average
Walking + Running Distance
[Month] [Day] - [Month]
[Day] [Year]

What is my move ring at?
You’ve burned [Current Calorie Burn] out of your [Calorie Burn
Goal] calorie goal

Move Ring
Today [Time]
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Our study findings reveal preferred differences compared to how Siri answers

questions. While Siri predominantly uses Minimal vocal responses and Keyword

information displayed on screen, our studies highlight a preference for Full Sen-

tence answers. Notably, Siri rarely employs Full Sentences, except for activity ring

data, where multiple data points are conveyed, and when there are contextual de-

viations from the question (see Table 6.3, ”What’s my heart rate?” - heart rate data

was not current and Siri responded with the last sample recorded). This divergence

from our study findings in VA practice highlights varied strategies in voice assistant

design, with Siri prioritizing brevity and visual support. However, the presence or

use of a screen may not always be optimal (as in the example shared in the Intro-

duction where the focus should remain on the hiking environment). Such insight

and discussion sheds light on the diverse approaches that can be adopted by voice

assistants in managing personal health data and more importantly underscores the

importance of understanding user preferences, expectations, and contexts.

6.6.4 UEQ+ Semantic Differentials

In our study, despite using an adapted version of the the UEQ+ survey to mea-

sure VA user experience [100], we observed conflicting semantic differentials for

Efficiency and Comprehensibility. The lack of correlation found suggests that the

semantic differentials may not be effectively capturing the same intended user ex-

perience factor. These findings highlight the need for future work to refine the

UEQ+ scale for VA interactions, aligning semantic differentials more closely with

user experiences. Specifically, better assessing combinations of the semantic dif-

ferentials while also exploring the potential for new overall user experience factors

could enhance the scale’s utility and effectiveness.

While it can be argued that two items do not need to directly relate to provide a

worthwhile assessment, as we do in this work, the divergent performance of these

factors raises some concerns. For example, a response may be both simple and

ambiguous, resulting in a lower overall comprehensibility. However, it is better to

isolate factors that measure the same element of user experience for a more com-

prehensive and nuanced understanding. By doing so, practitioners can pinpoint
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specific areas for improvement and create more targeted solutions. This approach

not only enhances the accuracy of evaluations but also leads to more effective and

preferred interactions, ultimately improving overall user satisfaction and interac-

tion quality.

6.6.5 Limitations

Our study has three main limitations. First, its online nature restricts the gen-

eralizability of findings to real-world VA interactions, which can be potentially

influenced by contextual factors and day-to-day use. Such examples include ask-

ing a personal health data question during a walk or conversely while sitting at

home relaxing. Thus, future research should extend our findings through in lab

and real-world settings for enhanced validity and reliability. Second, our partici-

pant pool consisted of individuals familiar with VAs and personal health data (i.e.,

potential sampling bias) While we are confident that focusing initially on this de-

mographic provides insights into general results, we acknowledge it may not fully

represent the broader population for whom VAs could be used. To address this,

future research could include participants with varying levels of VA familiarity and

increasingly diverse demographic backgrounds (e.g., older adults). Third, while

Study 2 focused on insight categories, only Value-based responses were utilized.

While this aligned with the study’s goal, it does leave other combinations of in-

sight category and response type to still be evaluated which in turn could provide

increasingly fine-tuned guidelines for VA answers. Furthermore, while our study

offered heart rate and step count as data types of choice throughout each study,

to engage participants within the study, we recognize that questions pertaining to

specific data types could result in different desired answers structures. Future work

could perform a comparative study across the many data types captured within

one’s personal health data. Our studies offer initial insights into answer structures

for VA interactions involving personal health data questions. By exploring diverse

response types and insight categories, notably applicable to any data type, we lay

the groundwork for designing and developing VA interactions involving personal

health data.
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6.7 Summary

Through the use of a custom-built browser-based pseudo-voice assistant (VA),

this chapter investigates differing answer structures in response to personal health

data queries. Combined with knowledge gained from the previous chapters, and

known guidelines for smartwatch visual output design, we now have the tools nec-

essary to begin building a smartwatch application which can appropriately handle

a range of personal health data queries desired by people.

Specifically in this chapter, two user studies involving a total of 82 participants

were conducted, during which participants interacted with our VA, posing ques-

tions and ranking their experiences and preferences of three distinct answer struc-

tures: Minimal, Keyword, and Full Sentence. We provide empirical findings that

reveal a notable preference for full sentence answers, which consistently demon-

strated higher quality, behavior, comprehensibility, and efficiency across various

response types (Open, Range, Binary, and Value) and personal health insight cate-

gories (Contextual, Preemptive and Proactive, Goal and Performance, Combination

and Comparison, Historical and Trend, and Current Status). These results come at a

contrast to previous work which explore answer structures for general VA use. Our

results suggest that full sentence answers offer less ambiguity, and despite their

longer response time, full sentence answers were perceived as equally efficient.

Along with other findings, such as a desire for VAs to be efficient and technical

rather than social entities (e.g., as a fitness coach), we provide design implications

in line with these results that offer insight into future VA systems handling personal

health data queries.
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Chapter 7

: Enabling In-Situ
Databiting on the Smartwatch
Leveraging Touch and Speech

In this chapter, we present our most focused approach to databiting

on the smartwatch. Building on the knowledge gained from previ-

ous chapters, we now explore the use of databiting for in-situ explo-

ration of tracked workout data through a custom-built smartwatch ap-

plication, DataWatch. DataWatch specifically targets tracked work-

out data, which holds the greatest potential for in-situ exploration, as

seen in Chapter 4, and was the most frequently queried type of data,

as noted in Chapter 5. Work presented in this chapter has not been

submitted to a venue, however, we do anticipate submitting this work

in future. Building of the DataWatch application, study design, and

analysis are entirely my own work. However, discussions surrounding

the work put forward in Chapter 3 and Chapter 4 influenced aspects

of the DataWatch application and study methodology.

7.1 Introduction

We present DataWatch, a novel and custom-built smartwatch workout track-

ing application designed to facilitate databiting—lightweight and transient data
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exploration—specifically for tracked fitness data while in-situ. We designed and

developed DataWatch (Figure 7.1) to enable users to interact with their fitness data

directly on their smartwatch, supporting three types of exploration: 1) Single Value

– displaying aggregated textual values, 2) Browse – showing charted values from

past workouts, and 3) Compare – comparing past workout data with current met-

rics. Users can explore data during three workout phases: 1) Before, 2) During,

and 3) After a workout. Additionally, DataWatch supports two filtering methods:

1) Temporal and 2) Activity filtering.

Smartwatches, due to their limited screen space, cannot or do not accommo-

date touch-based controls and options alongside their glanceable visualizations.

For instance, the current Apple Watch applications restrict users to viewing data

by predefined time segments, such as the current day or week. A lack of screen

space makes it impractical to navigate to separate pages to adjust widgets, options,

and query types. For example, time-based interactions, such as entering specific

dates, times, and ranges, are tedious on smartwatches, leading most current health

applications to limit exploration to static glanceable visualizations.

Yet, in certain everyday situations, such as when people are in-situ, having the

flexibility for lightweight and transient data exploration directly on the smartwatch

can greatly benefit individuals. As such, and to address the challenges of touch

noted above, DataWatch draws inspiration from previous research advocating the

benefits of multimodal interaction [98]. Specifically, we incorporate speech as a

primary input modality to overcome the limitations of touch-based controls pre-

viously mentioned. Speech-based interaction takes little screen space, is flexible,

and allows users to express their intent easily [8, 42], making it an ideal solution

for smartwatches.

To better understand how such databiting capability is perceived and utilized,

we conducted an exploratory, observational, study with 12 individuals who track

workouts regularly and are interested in their personal fitness data. Participants in

our study downloaded DataWatch to their own Apple Watch, and used DataWatch

to track their workouts over the period of one week, while also databiting when

desired.

Our contributions are three-fold:
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Figure 7.1: DataWatch supports in-situ exploration of past tracked workout data

through multi-modal interaction. People can track and control their workouts while

viewing their currently collected metrics , as is typical with current smartwatch

health applications. Different to these applications, people can then at any time

long-press elements on screen (elements which can be long-pressed, and thus

queried, are denoted with a blue dot) to initiate a spoken query regarding the in-

teracted element . Upon providing a query, DataWatch processes the query to

show the resulting output to the person . In this Figure, a databiting instance

involving comparative exploration and temporal filtering is queried during a per-

son’s workout. Please note, screens which appear beside and below the smartwatch

are screens which can be swiped/scrolled to, from the current displayed screen.
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C1: The design and implementation of DataWatch which represents a

novel approach to smartwatch data exploration. To our knowledge,

DataWatch is the first app to leverage touch and speech to enable

exploration of past tracked workout data directly on the smartwatch.

It facilitates databiting—lightweight and transient data exploration—

allowing users to interact with their personal fitness data while in-situ.

C2: An empirical exploratory study was conducted with 12 Apple

Watch users using DataWatch over the course of one week. Through

quantitative and qualitative analysis, we provide insights into how peo-

ple explore their past collected workout data, their motivations for

such exploration, the perceived actionable insights and usefulness, and

their general reactions to DataWatch.

C3: Reflecting on our observations, and participants’ feedback, we

discuss implications of DataWatch’s design and provide opportunities

for further development of databiting. Through this discussion, our

aim is to continue to better support personal data exploration on the

smartwatch in the future.

7.2 DataWatch

To enable flexible and personalized in-situ fitness data exploration on the smart-

watch, we designed and developed DataWatch. DataWatch is an Apple Watch

workout application that leverages speech as well as combined touch and speech

interactions for lightweight and transient exploration of previously collected fitness

data. In this section, we describe the design rationales for DataWatch, highlight the

user interface and interactions, and discuss technical aspects of DataWatch’s im-

plementation.

7.2.1 Design Rationales

DR1: Utilize Intuitive Layouts, Interactions, and Visualizations to Support Lay
Persons DataWatch targets everyday smartwatch users who track workouts and

122



want to further explore their fitness data. As such, we recognize that users may not

have expertise in data visualization or analytics. Therefore, DataWatch prioritizes

intuitive design, interactions, and visualizations.

DataWatch is designed to visually and interactively mirror Apple’s default

Workouts application. This familiarity can greatly reduce any effort and time

needed when learning to use a new application. Thus, people can focus their at-

tention on the novel exploration capabilities, and not the interface itself. As such,

DataWatch employs only one additional interaction above and beyond that of Ap-

ple’s Workouts application; a long-press (i.e., touch and hold), which can be done

on a variety of on-screen elements denoted by a blue dot (see Figure 7.1 ), to

initiate a query. This then brings forward a keyboard/microphone for which users

can use to provide a query (see Figure 7.1 ).

DataWatch utilizes line charts, which are common and intuitive for lay users

[136], and text-based representations of data. Furthermore, text is used to highlight

key insights, when queried, within a line chart. This can further simplify compre-

hension of data and provide immediate insight from the requested data. For exam-

ple, Figure 7.1 highlights the use of both a line chart and textual representations

of data as seen in DataWatch.

DR2: Leverage the Complementary Nature of Speech and Touch Interactions
on the Smartwatch The limited screen real estate of a smartwatch limits both the

visual components that can be displayed as well as the input mechanisms afforded.

To address the limited screen real estate and input limitations, we leverage natural

and familiar modalities: speech as well as touch and speech. Touch interactions

provide familiar and direct manipulation of on-screen elements [98], such as the

metrics displayed during a workout (see Figure 7.2 ), while speech offers a more

expressive way to convey intent and a higher freedom of expression [8, 42, 182].

Our goal was to utilize these complementary modalities for lightweight and

transient exploration, rather than provide complete parity between touch and speech

interactions. This complementing of input modalities is best exemplified in Fig-

ure 7.2, where the touched metric is used as input for the processing of the query

subsequently provided. Utilizing a combined touch and speech approach recog-
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nizes that touch alone would not suffice for databiting on a smartwatch, while also

keeping databiting as close to the data of interest and without needing additional

screen real estate for widgets, options, and exploratory controls. We further detail

how we utilize both touch and speech in Sections 7.3.2 and 7.3.3 below.

Figure 7.2: DataWatch supports in-situ exploration before starting a workout. On

the homepage, scrolling through the many workouts available for tracking, people

can long-press on a workout type of interest to initiate a query . In this Figure,

a databiting instance using an activity filter and browse exploration capabilities is

demonstrated . Please note, the list of workouts available extends beyond what is

shown below the smartwatch on the left, and is reduced here for space preservation.

DR3: Support Comprehensive In-Situ Exploration Reflecting on personal data

using a smartwatch can occur increasingly close to the action, for which the re-

flection is related, to benefit on-the-fly decisions [3, 69, 107]. The term in-situ

exploration is often thought to only encompass exploration of data that is currently

being tracked while performing the activity tracking that data. However, we take a
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broader stance, considering in-situ exploration to include any interaction with data

that occurs in the context of and environment where the activity takes place. As

such, DataWatch supports exploration before, during, and after a tracked workout,

which allows for a comprehensive in-situ exploratory experience.

Before starting a workout, people can benefit from insights that help them

prepare and set goals (i.e., preparation-for-action). This preparation phase is key

for setting realistic and achievable targets, ensuring users are well-informed. Fig-

ure 7.2 highlights this before activity querying of data.

During a workout, real-time data exploration can provide actionable insights,

insights which can potentially be influential to the activity being performed (i.e.,

reflection-in-action [149]). Displayed metrics on screen update continually through-

out the workout to show currently captured and calculated values associated with

the workout. These can provide actionable information if people know how the

current value displayed relates to a previously defined goal or historical data. How-

ever, if they do not, databiting can provide actionable insights previously unavail-

able to the person. Figure 7.1 highlights an example of during workout querying

of data.

After completing a workout, reflection on the collected data (i.e., reflection-

on-action [149]) allows users to understand their performance, identify areas for

improvement, and track progress over time. This reflective phase is essential for

longer-term motivation and continuous improvement. As such, a summary screen

shows the aggregate metrics captured within the workout just completed and Fig-

ure 7.3 highlights after workout querying of data.

DR4: Enable Flexible Temporal Filtering to Support Visually-Constrained Ex-
ploration In addition to traditional temporal filtering (e.g., “The last six months”,

“January 1 to February 1”, “Last month”, “Since June 1st”, etc.), supporting activity-

based filtering allows people to explore and temporally filter their data implicitly.

Temporal filtering, while useful, can be limiting when users cannot remember the

exact dates of their past activities and when visuals on-screen do not highlight these

dates for further filtering. By incorporating activity-based filtering, users can ex-

plore their data based on the last number of activities performed. This enhances
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Figure 7.3: DataWatch supports in-situ exploration after completing a workout.

On the summary screen, shown post workout, people can long-press on a metric of

interest to initiate a query . In this Figure, a databiting instance using a temporal

filter and single value exploration capabilities is demonstrated . Please note,

content displayed around the smartwatch on the left, can be scrolled to and from.

accessibility and ease of use, ensuring that valuable data is not overlooked sim-

ply because the user cannot pinpoint when it was collected. Figures 7.2 and 7.3

highlight activity-based filtering, while Figure 7.1 highlights a temporal filter.

7.2.2 User Interface and Interaction Design

Base Functionality At its core, DataWatch is a workout tracking application.

As such, DataWatch allows participants to choose an open-goal workout type to

track (e.g., indoor walk, outdoor cycle, hike, swim, elliptical, yoga, etc.), see Fig-

ure 7.2 (left). Upon starting a workout, live metrics are captured and shown on

screen across a variety of workout-specific metrics pages which can be viewed by
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scrolling up/down, see Figure 7.1 . Controls, including pause/resume, end, and

a microphone for querying are available by swiping left from any of the metrics

pages, while music playback controls are available by swiping to the right. Upon

completion of a workout, the workout is saved, and a summary screen provides

aggregated collected metrics of the workout, see Figure 7.3 (left).

Databiting DataWatch currently supports databiting of five captured metrics: 1)

Duration, 2) Distance, 3) Pace, 4) Calories Burned, and 5) Heart Rate. These

metrics are not only common across most all workout types and in many mHealth

applications [97], but are also some of the most desired for exploration by smart-

watch users according to our findings in Chapter 5.

Of this data, people can conduct databiting using three types of exploration: 1)

Single Value - provides an aggregated value textually represented on-screen; see

Figure 7.3 . People can access single value exploration through keywords such

as “what is”, “what was”, “how many”, etc., 2) Browse - provides a line chart of all

queried data as well as any supplemental aggregate information through text and a

corresponding dashed line within the chart; see Figure 7.2 . People can access

Browse exploration through keywords such as “show”, “explore”, “highlight”, etc.,

and 3) Comparison - provides similar exploration to that of Browse, however, also

includes the currently captured metric; see Figure 7.1 . As a comparison chart

is displayed, the currently captured metric is highlighted as a larger line mark and

updates live within the chart as the captured metric changes. People can access

Comparison exploration through keywords such as “compare”, “combine”, etc.

Query Input The use of each of touch and speech input modalities can be ac-

cessed throughout varying parts of DataWatch. Speech alone can be initiated from

the microphone button located in the controls screen during a workout, see Fig-

ure 7.1 . To utilize touch and speech, a person can long-press any on any inter-

active element denoted by a blue dot (i.e., an activity before a workout or a metric

during and/or after a workout, see Figures 7.1 , 7.2 , and 7.3 ). Importantly,

DataWatch recognizes the element touched and incorporates this into the spoken

query; this can be seen in the example in Figure 7.1 through , where heart
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Figure 7.4: DataWatch’s input screens are shown demonstrating live query input.

By default the keyboard is brought forward (left), which can be switched to dic-

tation capture (right) by selecting the microphone icon at the bottom right of the

screen . Input can either be cancelled or sent for processing through the controls

at the top of either input screen .

rate is not mentioned within the query yet is understood as the data desired for

exploration due to the initial touch interaction.

Furthermore, DataWatch recognizes the specific workout type being interacted

with, currently tracked, or having just been tracked, when databiting occurs. This

applies before starting a workout when a query is initiated by long-pressing on

a workout type, and during or after a specifically chosen workout. This workout

recognition within a query is best exemplified in Figure 7.1 , where DataWatch

shows data from only walking workouts within the time period provided. This level

of recognition allows people to focus on data pertinent to a particular workout type

while ensuring that the databiting process is in-situally relevant.

Upon initiating a query, a keyboard is overlaid on the currently visible screen.

By default the keyboard is shown, allowing for a natural language query to be typed

out, while the microphone button can also be tapped to initiate speech input; see
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Figure 7.4 . When using either the keyboard or microphone, the query entered

by the participant is seen live as they provide input. When finished, a user can

click “Done” which sends the query for processing and resolution, or, if desired,

the person can cancel the input to go back to the screen from which the query

interaction was initiated; see Figure 7.4 .

Feedback When DataWatch can process the query and is able to resolve the data

needed, the exploration result is overlaid on top of the currently displayed activity,

metric, control, or summary screen. To end the exploration, the person taps on

“Close” (see Figures 7.1 , 7.2 , 7.3 ). Conversely, when DataWatch is unable

to process or resolve the query, a contextual message is overlaid. After reading the

message the person can tap “OK” (see Figure 7.5) to go back to the screen from

which they initiated the input.

Figure 7.5: When a provided query is either not valid or resolving the data was not

successful, a contextual message is displayed. Three potential messages are shown

here, while others exist depending on the issue faced.

7.2.3 Interacting with DataWatch

We illustrate DataWatch’s interface and interactions through a storied usage

scenario: Sam is starting their day with an indoor walk on their gym’s track while

using DataWatch to track their activity. We note, this scenario does not encompass

all queries possible.
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Before Starting the Walk Before starting his walk, Sam uses DataWatch to get

motivated and prepare-for-action (as illustrated in Figure 7.2). He opens DataWatch

and rather than tapping on Indoor Walk to get started, he first taps and holds on the

desired workout. He then states “Show me my longest walk in the last 10 walks.”

DataWatch quickly handles his command and displays that his longest walk from

his last 10 was 24 minutes. Feeling good today, Sam is motivated by this data to

surpass his previous record and wants to aim for 30 minutes.

During the Walk A few minutes into the walk, Sam is curious about his heart

rate’s performance during a specific period (as illustrated in Figure 7.1). First, he

notices his current heart rate is around 99 BPM. Curious about how this compares

to the latter part of last year when he was more regularly at the gym, Sam taps

and holds the heart rate metric and simply says, “Compare to my average from

July 1st to Dec 31st.” The resulting chart shows his current heart rate is roughly

alongside his average but on a slight downward trend. Realizing he isn’t pushing

himself as much as he used to, and could, Sam decides to increase his effort to

reach the higher values he saw earlier in the explored period. Throughout his walk,

he keeps an eye on his BPM, ensuring he pushes himself to his target value. This

reflection-in-action helps Sam adjust his effort to meet his new-found goal.

After Ending the Walk After completing his walk, Sam becomes curious about

his recent performance while scrolling through his summarized metrics. Sam sees

his distance metric and decides to tap and hold to ask a question (as illustrated in

Figure 7.3). Unsure of exactly when he has been to the gym in the last week or so,

Sam asks DataWatch, “How far have I walked in the last five walks?” The response

indicates he has walked 7.2 km in total. This was lower than Sam expected; he had

hoped it would be higher. Taking this reflection-on-action as motivation, he sets a

new goal for his next walk: to walk 2.8 km, which would bring his total to 10 km

over the last six walks. This quick post-workout reflection helps Sam set future

targets and stay motivated to further improve his fitness.
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7.2.4 Implementation

DataWatch leverages the Apple Watch and watchOS platform, specifically de-

signed for Series 4 watches onwards running watchOS 9.0 or later. Thus, DataWatch

can run on 10 generations of Apple Watches dating back to 2018; this is in fact only

limited by Apple’s own watchOS restrictions which inhibit older watches from in-

stalling watchOS 9.0, required for some of the framework access utilized within

DataWatch. DataWatch incorporates two parts: a primary watch application, which

handles workout tracking, user queries, and interaction, and a companion iPhone

application, which handles the query processing and resolving in the background.

To ensure compatibility with accompanying iPhones, iOS 17.0 or above is required.

Both applications were built entirely in the Swift programming language.

Apple’s HealthKit11 framework is used to read and write workout data within

DataWatch while maintaining user privacy and control. Prioritizing user privacy,

DataWatch first seeks permission to read and write workout data. Furthermore,

people have the ability to later rescind or allow permission of this data if desired.

Since all personal tracked data is stored on the user’s iPhone, the current ver-

sion of DataWatch requires the iPhone to be unlocked to resolve a query. This is

an Apple-imposed security measure to protect personal health data. Only the most

recent week’s data is stored on the Apple Watch, which is insufficient for most

queries. Therefore, unlocking the iPhone grants access to the necessary data. Note

that the companion iPhone app operates in the background and does not need to be

opened for DataWatch to function.

To enable natural language interaction, a custom Natural Language Processor

(NLP) and Resolver (NLR) were built. When a user interacts with DataWatch, their

query, and additional contextual information about the workout and interaction, are

securely transferred to the iPhone via Watch Connectivity12. Once transferred to

the iPhone, the NLP parses the query using part-of-speech tagging, identifying pa-

rameters such as the desired data source, query intent (through interrogatives used),

data filters (temporal and activity), and aggregations. Chrono, a natural language

11https://developer.apple.com/documentation/healthkit
12https://developer.apple.com/documentation/watchconnectivity
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time-period parsing library originally built in JavaScript13 and modified for Swift14

was further custom-modified for use within DataWatch to handle temporal filtering

of data. Following the NLP’s completion, resulting in a set of found tags, an NLR

analyzes the extracted tags alongside the current watch screen information and user

interaction details to then fully resolve the interaction, lookup the necessary data,

and perform any needed calculations. Finally, the results are shared back to the

watch, again through Watch Connectivity, for appropriate display.

7.3 Study

7.3.1 Recruitment

We recruited participants from Reddit and through advertised posters on our

University’s two campuses. We advertised our study across subreddits relating to

personal health, apple watch use, as well as a number of general city subreddits

across Canada. Our inclusion criteria were those who (1) were aged 18 years or

older; (2) own an Apple Watch Series 4 or newer with watchOS 9.0 or higher

installed, and have a paired iPhone; (3) have access to Zoom and a stable internet

connection; (4) are native English speakers; (5) currently live in Canada; (6) use

the Apple Workout application for at least one of the following workout tracking

(indoor walk, outdoor walk, indoor run, outdoor run, elliptical, hike, indoor cycle,

stair stepper, rower, yoga, functional strength training, core training, Pilates, dance,

tai chi, cool down); and (7) have been regularly collecting personal health data on

their Apple Watch for at least three months.

In appreciation for their time and effort, participants were offered up to $20

CAD. The amount a participant received was not tied to the number of responses,

but rather their overall participation. We provided the equivalent of $5 CAD for

attending the introductory session, and another equivalent of $5 CAD for attending

the final interview. During the week long data collection, we added an additional

equivalent of $10 CAD if the participant used DataWatch to track a workout at

13https://github.com/wanasit/chrono
14https://github.com/quire-io/SwiftyChrono
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least once. Notably, this was not tied to databiting instances, rather only general

app use. We provided compensation after the final interview, or upon withdrawal,

in the form of an electronic Amazon.ca gift card.

7.3.2 Study Procedure

Our study included three stages, similar to that of the study conducted in Chap-

ter 4: an introduction and tutorial session, a seven-day in-the-wild data collection

period, and a final interview. The procedure and study materials were iterated upon

during two pilot participants with people who were recruited in the same means as

our participants, thus meeting our study’s inclusion criteria. All participants pro-

vided consent at the start of the study, in accordance to our approved ethics protocol

reviewed by our institution’s ethics review board.

Introduction and Tutorial Session.

To start the study, the participant joined a Zoom meeting, ˜30 minutes long,

where we introduced and acknowledged their interest and participation in our study.

Participants were encouraged and asked to interject with any comments and/or

questions during the meeting. The researcher shared presentation slides (please

refer to the supplemental material) via the screen sharing functionality. The goal

of the project was expressed to the participant along with other important remarks

before they completed a demographic survey. Then, the researcher guided the

participant through the installation and setup process of the application on the par-

ticipant’s own Apple Watch to be used throughout the data collection stage of the

study. The researcher then gave participants a walk-through of the application

through a live demo from the researcher’s Apple Watch which was mirrored to the

researcher’s iPhone and the iPhone’s screen shared on Zoom. Upon completion of

the walk-through, the researcher reiterated the general functionality of DataWatch

through slides, also highlighting queries that were not possible. Finally, partici-

pants tried a query on their Apple Watch to ensure everything was working and

any technical issues related to interaction, data access, etc. were handled.
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Data Collection.

Participants used DataWatch over the course of the next seven days to track

their workouts as usual, while being encouraged to use the databiting capabilities

as desired. We did not require a minimum number of databiting instances through-

out the study, so as to not elicit forced uses and queries from participants. Due

to the potential for participants to be active (e.g., during a run) when a desired

databiting instance arose, we instructed them to only provide a response through

the application when it was safe for them to do so.

Final Interview.

After the final day of data collection, a Zoom meeting was held where a re-

searcher conducted a semi-structured interview with each participant. The meeting

was audio recorded and later transcribed. The goals of the interview were: (1) to

garner general reactions and experiences of using DataWatch, (2) to explore per-

ceptions towards the use of speech as an input modality for personal health data

queries, (3) to discuss insights gained as a result of databiting, and (4) better un-

derstand motivations behind databiting in-situ. To aid in recollection, a report of

each participant’s queries were shown to them via Zoom’s screen sharing function-

ality. Finally, the researcher answered any remaining questions from a participant,

thanked them, and provided the compensation. Each interview took ˜30 minutes.

7.4 Results

Table 7.1 summarizes the demographic, smartwatch usage, and health data col-

lection, workout tracking details, as well as databiting counts of our study partic-

ipants. Of our total participants, one was removed from analysis as they did not

use DataWatch to track a single workout throughout the week of data collection,

nor use it for databiting even prior to a workout. Of the remaining 12 participants,

participants were aged from 20 to 44 (M = 27.9) and held a range of occupations.

At the time of conducting the study, participants had collected personal health data

for an average of 46.2 months (SD = 41.6 months) and had used a smartwatch
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for an average of 36.0 months (SD = 33.0 months) while wearing the smartwatch

for an average of 6.6 days per week (SD = 0.8 days). Participants largely tracked

walks, runs, hikes, cycles, and functional strength training workouts, while includ-

ing other workouts such as swimming, soccer, elliptical, Pilates, dance, yoga, core,

and high intensity interval training.

In the following subsections, we report on quantitative results from the use of

DataWatch, as well as emergent themes found from our qualitative analysis of the

interview scripts.
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Table 7.1: Summary of demographic information, health data collection, smartwatch usage experience, and number of

tracked workouts and responses reported from our study participants.

Alias Age Gender Occupation
Health Data
Collection

Smartwatch
Usage (Total
/ Days per
Week)

Number of
Workouts
Tracked

Databiting
Interactions

P1 22 M Student 0y 8m 0y 8m / 5 2 0

P2 21 M Student 7y 4m 3y 9m / 7 3 13

P3 38 M Consultant 6y 4m 6y 4m / 7 2 13

P4 44 M Professor 13y 0m 10y 0m / 7 7 4

P5 23 M IT Administrator 0y 9m 0y 8m / 5 9 11

P6 38 F Student 2y 0m 1y 0m / 7 9 28

P7 39 M Senior Solution Architect 4y 1m 4y 1m / 7 3 4

P8 22 M Student 0y 4m 0y 4m / 7 11 8

P9 24 F
Communications & Program
Coordinator

4y 0m 4y 0m / 7 7 8

P10 20 M Student 1y 9m 1y 9m / 7 2 17

P11 23 F Research Assistant 2y 6m 1y 0m / 6 2 7

P12 21 F Sales Associate 3y 5m 2y 5m / 7 1 5
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7.4.1 Interaction Usages

Within our study, 58 total workouts were tracked using DataWatch (Avg = 4.8,

Min = 1, Max = 11, SD = 3.4), including walks, runs, cycles, gym sessions, core

training, and rowing. In and around these workouts, a total of 120 databiting inter-

action attempts were made (Avg = 9.8, Min = 0, Max = 28, SD = 7.1). Figures 7.6,

7.7, and 7.8 highlight all databiting interactions for each participant. Notably, this

distribution of databiting interactions follows very closely with the results found in

Chapter 4, see Table 4.3 the first row corresponding to Physical Activity.

Among the 120 databiting interactions, no critical errors occurred (i.e., a mes-

sage or result was always provided). However, 18 (15.0%) databiting interactions

failed due to uncertainty of the term length/long and much (i.e., “How long was my

last workout” - DataWatch requested that a specific data type be included as long,

length, and much have connotations of both distance and time metrics), 12 (10.0%)

failed due to an unresolved error related to queries that included an edge case. This

edge case filtered out the most recent workout through activity-based filtering, such

as (P6 - “What’s my highest heart rate during the last exercise”), 14 (10.8%) were

simply unsupported queries (i.e., comparisons before a workout where no current

metrics were available to compare, or using multiple aggregations in a query). As

a result, 76 databiting interaction attempts were successfully executed.

Input, Processing, and Exploration Time Input took an average of 12.7 sec-

onds (Min = 5.2, Max = 44.4). This includes the time from when the keyboard

was brought forward on the watch, to when the participant clicked done to send the

query for processing. Then, our processor and resolver worked quickly, processing

and resolving the queries in an average of 0.3 seconds (Min = 0.01, Max = 8.5). Fi-

nally, participants viewed the resulting visualization for an average of 7.4 seconds

(Min = 1.4, Max = 30.4). Combining times for input, processing and resolving, as

well as viewing results, we found a total average exploration time of 21.7 seconds

(Min = 7.4, Max = 58.8).
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Figure 7.6: Instances of databiting (represented by colored blocks) are highlighted

within workout timelines and organized by participants (P1-P5) and days of use

(each row). Note that the spacing between icons and the physical length of the

workouts (beginning to end) do not correspond to any specific results or times.

However, the size of the colored databiting blocks reflects the total exploration

time for each instance.
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Figure 7.7: Instances of databiting (represented by colored blocks) are highlighted

within workout timelines and organized by participants (P6-P10) and days of use

(each row). Note that the spacing between icons and the physical length of the

workouts (beginning to end) do not correspond to any specific results or times.

However, the size of the colored databiting blocks reflects the total exploration

time for each instance.
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Figure 7.8: Instances of databiting (represented by colored blocks) are highlighted

within workout timelines and organized by participants (P11-P12) and days of use

(each row). Note that the spacing between icons and the physical length of the

workouts (beginning to end) do not correspond to any specific results or times.

However, the size of the colored databiting blocks reflects the total exploration

time for each instance.

Exploration Instances To trigger input on the watch, participants almost exclu-

sively used the activities and metrics, directly interacting with the data they were

interested in exploring. However, one databiting interaction was initiated using

the microphone button on the controls screen during a workout (P5 - “Tell me my

average pace from the last five runs”). This occurred early on in the participant’s

workout, likely when a pace was not yet displayed on the metrics screen given

the limited captured metrics during the started workout (see Figure 7.6, P5’s first

workout on the first day).

Participants largely preferred the Value exploration type, with 89 (74.2%) databit-

ing interactions requesting this type of visualization. Value was followed by Com-

pare which was used for 16 (13.3%) databiting interactions, while Browse was

used for 15 (12.5%). While a clear preference of exploration type was seen, partic-

ipants conducted databiting instances almost equally Before (44, 36.7%), During

(34, 28.3%), and After (42, 35.0%). While the majority of databiting interactions

were done in-situ, some participants (P2, P5, P10, P12) also used DataWatch to

explore data away from a workout (25 instances of the 120 — highlighted above in

the Before counts as the list of workouts screen was interacted with, 20.8%). No

clear distinction between the exploration type and time of exploration was found,

however Browse exploration was slightly more often conducted before and after a
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workout.

Finally, we saw almost half of databiting interactions use activity filtering (53,

44.2%). Temporal filtering was used in 46 (38.3%) of databiting interactions, while

the remaining required all data collected to be used as no filter was provided. There

again seemed to be no pattern evident for the use of a specific filter for varying

exploration types or during varying exploration times.

7.4.2 Motivation for Exploration

Two major themes arose which suggested reasons for databiting in-situ on the

smartwatch: verification of performance (P3-7, P9, P10) and curiosity (P3-4, P6-

8). Participants used databiting to quickly check their workout metrics before and

after an exercise to first understand their performance and to then later ascertain

their progress towards a goal. For example, P8 mentioned “I mean I’d see that

[time walked] and I’d be like, oh, that’s interesting, 9 minutes. Usually I feel

like it’s 10. Let me just check how does this compare with my other times?...it

is faster.” While during a workout, databiting interactions pertaining to heart rate

were often used as a gauge for effort and performance. Heart rate was seen as a

metric that participants could control and “feel” (P2, P6-8) in-situ, more so, for

example, than calories burned or distance. To this effect P6 stated “I felt that for

this exercise...that my heart rate is very high in this exercise and I wanted to verify

that.” P8 then went as far to say “I only monitor [on the smartwatch] only when I

feel that my heart rate is really going up.”

Curiosity, piqued by the emergence of the databiting functionality, also moti-

vated exploration on DataWatch for a handful of participants (P3-4, P6-8), even for

data types previously unexplored. P8 highlighted “Like my workout at the gym, I

don’t really focus too much on my heart rate, especially when I’m not doing car-

dio. But I figured you know, since I have it there...I was surprised to see that it did

get pretty high.” P7 added their experience with the distance metric, “On average,

walk for two kilometres. That was a surprise. I never measure distance, I just walk

until I feel that I don’t want to anymore.”
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7.4.3 Speech Interaction for Personal Health Data Queries

All participants, except two (P9, P11) agreed that speech interaction on the

smartwatch was an appropriate method for databiting interaction. It was seen as

“comfortable” (P3), “easy” (P4), and a ‘‘very feasible option and especially given

the small screen of the the watch” (P7).

The most salient discomfort of speech interaction, noted by a range of par-

ticipants (P1-6, P8, P10-12), was the physical act of raising the smartwatch to

one’s mouth, which can feel awkward in the absence of Bluetooth headphones. P2

summarized this by saying “So I did kind of feel a little bit self self-conscious of

like kind of talking my watch because I think it kind of looks kind of funny cause

people are like, why are you talking to watch? I would say I was cognizant...I def-

initely was like in the back of my mind like, hey, I’m like talking to my watch right

now. Just kind of looks funny and people might see me talking, but it didn’t really

matter that much.” P6 further added that “I feel that I need to explain what I’m

doing.” However, we postulate, the increasing prevalence of voice assistant usage

through headphones mitigates this issue in future. As voice interaction continues

to integrate seamlessly into daily routines, it not only enhances the practicality of

smartwatches for health data exploration but also aligns with evolving user behav-

ior patterns.

A secondary theme that arose from two participants (P5 and P6) considered

workouts as a group behaviour (e.g., walking with a partner) and how speech in-

teractions with the watch can hinder the social context in which databiting may

be desired. For instance, P5 said “Obviously, like if I’m right next to someone

and they’re walking with me to go somewhere I might not want to do that just to,

you know, be more engaged in that conversation.” This emphasizes the importance

of developing touch-only and more versatile multi-modal solutions for effective

databiting on the smartwatch.

Otherwise, our discussions with participants highlighted minimal concerns about

asking data-oriented personal health questions in public settings (P2-4, P6-10).

Three reasons for this arose throughout our interviews. First, questions available to

ask in DataWatch were not deemed to be overly intimate. To this effect P2 shared “I
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wasn’t really worried and I feel like personally the data wasn’t specific or personal

enough to really warrant me caring.” While this was the case for the data available

to be explored in DataWatch, we recognize that other queries (e.g., queries regard-

ing blood sugar could be viewed as more private than those about heart rate) may

provide differing perceptions. Second, participants (P2, P7, P10) felt indifferent to

the presence of others, stating it is not other’s business nor would they likely care

beyond hearing them. P7 mentioned “It’s nobody’s business and if they’re curious

to listen you’re welcome to. But I’m sure they forget about it.” Finally, it was noted

that speech interaction was acceptable as long as the responses were not audibly

broadcasted. P8 added “I’m not out loud saying my whole health data, so I’m the

only one that sees it in the end.” While the question was perhaps not intimate, we

must recognize that the data in response to the databiting interaction remains as an

intimate element.

7.4.4 Benefits of Databiting

In Chapter 3, we discuss potential benefits of databiting, including actionable

insight and motivation for further exploration. Here, we discuss each of these to

better understand the benefits of databiting through DataWatch.

Actionable Insight

Given the increased insight available through databiting, one envisioned ben-

efit is that of actionable insight. While metrics on screen can provide this, it is

limited, especially if a specific goal or value is not predetermined. By databiting,

current metrics can be associated with past data, providing a more complete view

of trends and comparisons. Throughout, over half of our participants (P3, P5-9,

P12) discussed instances where databiting in DataWatch provided actionable in-

sight beyond what was currently achievable in the commodity workout tracking

applications that do not support databiting.

Some participants found that databiting encouraged them to push or reserve

themselves. For example, P3 highlighted how databiting caused them to push their

heart rate “What’s the average heart rate like?...it was lower than I expected, so
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I thought, oh, I can push myself more. I’m like I should be able to get that up to

130.” This was also the case for P6 and P8, as well as P9 who conversely realized

their peak heart rate was higher than desired and aimed to keep it within a lower

range; P9 mentioned “I could show like the highest and I think it was like 182 or

something, which I was never aware of that when I was working out. I was being

more mindful and then I was focused more on my heart rate.” P8 also highlighted

how databiting influenced their pace and pushed them to try and go faster.

Rather than pushing or reserving a value of a certain metric, participants also

found actionable insight by using resulting answer to then encourage them to main-

tain values. P5 mentioned “Am I exerting myself to the degree I wanted to? I

understand that I have a training plan set out, but in the moment you kind of just

forget like how how much am I actually doing. While I was thinking through that

in my head, I could just ask that...I felt like I got the answer very quickly and I felt

that it was very helpful [to keep me on track].”

For some, however, actionable insight was workout, and even current tracking

goal, dependent (P1, P2, and P10). P1, a participant that in fact did not conduct

a single databiting interaction, discussed specific queries that would be beneficial

at different instances in their training, but were not currently relevant. Specifically

P1 discussed “I think seeing my maximum would be pretty helpful, yeah, because

that way I can kind of get a sense of like what I’ve done previously...what I’m kind

of capable of, and like, am I able to do more today in this particular day. I think

for me it can definitely like motivate me...I’m always like oh let’s maybe push it

another couple like points.”

P2 discussed how databiting interactions during gym sessions were not as ac-

tionable for them, however they imagined databiting with respect to pace during a

run to be influential (P2 was dealing with an injury preventing them from running

during the time of the study), “It’s whenever I have something like this [databit-

ing], it’s not for the sake of interest, it’s more sort of the sake of can it help me

right? It’s that the data that I was provided when I was doing, like a weightlifting

workout, wasn’t really relevant to me. I didn’t really care what my heart was. I

didn’t really care how many calories I was burning cause that’s not why I’m work-

ing out right. Something like a run, for example, would be nice to compare my
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pace. If I’m trying to keep pace, that makes sense because I can actually adjust

my workout as I’m doing it. It’s very workout dependent, any workout that you’re

going to be consistently checking your stats that makes a lot more sense to be to

explore your data further.

Further Exploration

Another benefit discussed previously is that of using databiting as a stepping

stone to further explore one’s data in a more traditional manner. While the majority

of participants did not feel the need to further explore their data, interestingly, we

found through discussion that four participants (P5, P8, P9, and P12) in fact did

conduct additional data exploration due to a databiting interaction.

Each participant had varying reasons: P5 found that databiting reinvigorated

their motivation to explore their data (they had previously exported data to Notion

and done their own data analysis). P8 used databiting and initial curiosity to ex-

plore their pace for the first time, which in turn sparked a new-found interest in

exploring and monitoring pace. They mentioned “I actually got interested in look-

ing at my pace, like I’m going to use that as a metric now. Because it was so easily

accessible and easily seen on the app I was like, oh, wait like, why don’t I check my

paces for the last few months on my phone in more detail.” P12 was similar, in that

databiting allowed for initial exploration, which resulted in curiosity that initiated

further exploration on the smartphone. Finally, P9 further explored their data as a

means to verify a performance value they uncovered through databiting while on

a walk. They had found that during a databiting interaction, their heart rate was

significantly lower than expected, and used their phone to further look into their

collected workouts to better understand why: “Yeah, I did have to do that [pull out

their phone] because I was like this is so weird. Why is it so low? Because like

whenever I do my workout my average is usually at least above 100 something, so

I was like really confused. But then I pulled it up [on the phone] and I was okay

that makes sense because we did like a really really slow paced walk [with a friend

that likes to casually walk].”
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7.4.5 General Reactions to DataWatch

In general, all participants expressed excitement and positivity towards the

databiting feature included in DataWatch, expressing their belief that it should be

functionality included by default. For instance, P8 highlighted “I think this is some-

thing that smartwatch should absolutely have. I mean, a big reason I wanted to get

a watch was to not have to pull up my phone out of my pocket, especially when I’m

being active or when I’m like at the gym or whatever.” While P9 further contrasted

their experience with DataWatch to that of Apple’s default Workout application;

they mentioned “I did appreciate the additional data that it was able to give me so

that was really cool because I never really thought about it. But you actually don’t

get any of that with Apple’s [Workout app]. So I thought it was really, really cool.”

DataWatch notably enabled quick and easy access to information, our desired

goal; as P5 highlights “After a workout, you’re exhausted. You don’t really have

that kind of mental frame of mind to go through the past, but if you just have

a quick thought and you’re like, OK, I want to ask that I thought it was super

helpful in that. It’s more convenient, it’s faster and it’s less effort...I don’t really

want to be always going through my fitness data on my phone.” P8 also mentioned,

echoed further by P4, that the interactions were well designed and suited the watch,

saying “Especially when I’m being active or when I’m like at the gym or whatever,

I’d rather be able to do it [exploration] my watch, just as interactions are a lot

shorter, I don’t get distracted or I don’t have to, like, push through my pocket or

my backpack to get it [the phone].”

However, a few drawbacks still remained and were noted by participants. First,

an overarching topic that came up in most interviews was the hindrance of having

to unlock the iPhone in order to conduct databiting on the watch. P3 mentioned “It

ended up a bit more frustrating just because, as you said, you know the the hard-

ware and software limitations...oh, like your phone is not unlocked, your phone is

locked, unlock it and then ask.” While this was a unfortunate aspect that could not

be avoided, we do believe this is a factor that can be simply mitigated in future

operating system updates. Second, it was discussed a handful of times that certain

workouts simply offered too much friction for databiting during the workout itself.
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P5 mentioned “I have the thought of the question I have in mind during the run, it

is just the execution of that process...there’s some friction there. And so during the

middle of that run, it just felt like okay maybe I’ll come back to this later at some

point when I have the time.” Supported by our recorded uses of DataWatch, no

databiting was conducted during a run that was not immediately after starting a run

or immediately before ending the run. This highlights that databiting, as currently

implemented, may need to be even more lightweight for increasingly physical and

cognitively demanding workouts.

Lastly, while no formal question was asked with respect to whether participants

would want to continue using DataWatch, over that of the Apple Workout appli-

cation, three participants (P1, P4, P10) asked us, unsolicited, if they could keep

DataWatch and continue to use the app on their smartwatch outside of the study.

This unsolicited interest suggests a preference for DataWatch, highlighting its per-

ceived benefits and user satisfaction. It indicates that the databiting features and

usability of DataWatch may offer a more appealing or effective experience than

existing alternatives, promoting the idea of databiting and its inclusion in applica-

tions on the smartwatch.

7.5 Discussion

7.5.1 Feasibility of Databiting on the Smartwatch

Previous research has established natural interaction times for various smart-

watch application categories [148, 192]. Specifically, fitness applications have

been shown to have interaction times on average of 18 seconds. Furthermore,

smartwatch interaction has been seen to have a maximum acceptable boundary ex-

tending to 45 seconds for tasks involving navigation and communication. In our

study databiting interactions using DataWatch were on average 21.7 seconds (Min

= 7.4, Max = 58.8). This finding suggests that databiting interactions not only re-

main well within the acceptable limit of 45 seconds, they in fact align rather closely

with the typical interaction times observed for fitness applications. This adher-

ence to established interaction boundaries, alongside the strong general reactions
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to DataWatch, underscores our applications effectiveness in providing a seamless

and efficient experience for in-situ exploration of fitness data on smartwatches.

In addition to the quantitative and temporal aspects, all participants agreed that

databiting functionality on the smartwatch was both feasible and highly desired.

This consensus underscores several key points: First, databiting offers a level of

exploration that accommodates a wide range of users. In our study, participants

varied in their exploration experience—from those who used the smartwatch pri-

marily for general activity tracking to others who exported their data into other pro-

grams for in-depth analysis. Second, databiting was not perceived as a hindrance

to the activities being tracked. This collective endorsement for databiting on the

smartwatch highlights the potential for databiting to enhance the smartwatch expe-

rience, with respect to fitness tracking and data exploration, making it a versatile

tool for all users.

7.5.2 Reflecting on Design Guidelines

DR1: Utilize Intuitive Layouts, Interactions, and Visualizations to Support
Lay Persons All participants agreed that DataWatch effectively emulated the

Apple Workout application, making it intuitive and easy to adopt without requiring

significant upfront effort. However, several areas for improvement were identified.

Participants noted the absence of features such as automatic recognition of work-

out start and end times, as well as more complex metrics like power and cadence,

which are now offered by Apple. Incorporating these features in future updates

would enhance the intuitive and expected behavior of the application, further sup-

porting its usability for laypersons.

With respect to visualization, we opted for line charts to display resulting infor-

mation. Participants commented on the benefit of viewing data through the charts

presented. However, our choice could be enhanced by incorporating sparklines

[135] and bar charts, which may provide clearer and more accessible representa-

tions. While we aimed to facilitate data exploration through visual representation,

and wanted to incorporate all data points involved with the query, the limited num-

ber of queries resulting in this type of exploration underscores the complexity of
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the task. Most queries requested a small subset of filtered data, however, as we

saw 19 queries which still requested all captured data. Simplifying the represented

information could promote more efficient and intuitive exploration directly on the

smartwatch and in-situ. We may in turn also allow for a greater level of multi-

modal input, where data could be algorithmically aggregated (e.g., data captured

in the past year could be grouped by months) and a single bar could be tapped to

provide details-on-demand. By refining our visualization approach, we can better

support users in making sense of larger amounts of data quickly and effectively.

DR2: Leverage the Complementary Nature of Speech and Touch Interactions
on the Smartwatch While speech interaction was widely adopted within our

study, the occasional use of the phone for text input and remaining concerns of

social awkwardness encourage us to think about potential areas for improving the

multi-modality of DataWatch. Additionally, participants noted that speech interac-

tion could be cumbersome at times, particularly during workouts such as running.

While speech interaction is flexible, touch interaction capabilities could be im-

proved to offer set exploration features throughout. Enhancing touch interactions

could involve more detailed metrics/visualizations accessible through tapping on

respective metrics. Furthermore, list pickers could allow for preset adjustments

to the already on-screen visualizations. In future, implementing an increasingly

multi-modal approach offers a best of both worlds, allowing all to feel comfortable

exploring their data in-situ on the smartwatch.

DR3: Support Comprehensive In-Situ Exploration Our study further revealed

that participants had a relatively equal interest in exploring fitness data not only

during workouts but also before and after them. This was compounded by the un-

intentional capturing of databiting interactions that occurred away from a workout

itself. This comprehensive, in-situ, exploration desire aligns with our findings in

Chapter 4, where users expressed a need for continuous access to their health data

throughout their daily routines. This result further highlights the need to broaden

the scope of smartwatch applications beyond in-workout tracking and monitoring

of metrics to encompass more holistic health monitoring and data-driven decision-
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making throughout the day and surrounding one’s workouts.

Moreover, participants’ interest in exploring data before workouts again sug-

gests a preemptive and proactive approach to fitness data exploration and under-

standing, where users seek quick and immediate information from the smartwatch

to plan and prepare. This finding also highlights the potential for smartwatches to

support preemptive health behaviors and goal setting, enhancing user engagement

beyond during and after-workout analysis.

DR4: Enable Flexible Temporal Filtering to Support Visually-Constrained
Exploration Activity-based filtering was predominantly utilized throughout our

study, allowing us to largely achieve our design goal of offering implicit temporal

filtering through activity-based filters (i.e., ...last 5 runs). During the study, how-

ever, we observed instances where participants expressed interest in more granular

filtering options beyond generalized activity instances (e.g., different running dis-

tances or cycling routes). For example, some users indicated a desire to filter data

by specific running distances, such as by the last seven 5 km or 10 km routes, or

by geographic cycling routes/locations. Furthering the activity-based filtering ca-

pability could cater to increasingly diverse user needs and provide more nuanced

insights into fitness data trends.

7.5.3 Limitations

One limitation of the current version of DataWatch is its reliance on the user’s

iPhone being unlocked to access personal health data. This requirement adds an

extra step to the interaction (not captured in our times reported above) and disrupts

the in-situ smartwatch experience. While we believe that this limitation was not

enough to impact our study findings, it was a frustration noted by many partici-

pants. In future, we simply expect to not be limited by this. Companies in control

can simply offer increased storage directly on their smartwatches, provide alter-

native wearable authentication methods, and/or improve synchronization between

devices when data is requested.

Another notable limitation is the absence of the Speech framework supported
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directly on the Apple Watch15. Because of this, DataWatch could not in fact pro-

vide auditory feedback in response to databiting queries, as studied in the previous

chapter. This limitation reduces DataWatch’s versatility in-situ, as auditory feed-

back could benefit user interaction while performing other tasks [20]. Given that

the majority of databiting interactions involved single Value explorations, auditory

feedback could have been structured as per our previous Chapter’s findings, and

been easily incorporated. Future iterations, once Speech is supported, could in-

clude this element. Including auditory responses could broaden the application’s

appeal, offering intuitive and increasingly multimodal interaction while in-situ.

7.6 Summary

DataWatch is a novel, custom-built, smartwatch fitness application that enables

databiting—lightweight and transient data exploration—while in-situ of a tracked

workout. In this chapter, we highlighted design guidelines as well as the user

interface and interaction design of DataWatch, which was built from the results of

previous chapters.

To better understand and support the argument for databiting as a viable ex-

ploration paradigm on the smartwatch, we then conducted an exploratory, obser-

vational study with 10 participants. Participants used DataWatch to track their

workouts over the period of one-week, databiting when desired. Our findings, in-

cluding many instances of databiting, underscore that databiting interactions can

occur within a reasonable amount of time directly on the smartwatch and while

in-situ. Moreover, unanimous participant agreement emphasizes the utility and de-

sirability of databiting as a feature that should be integrated into smartwatch fitness

applications.

15https://developer.apple.com/documentation/speech
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Chapter 8

Discussion

8.1 Revisiting Lightweight and Transient Interaction for
Insight Rich Exploration

Throughout this thesis, we intentionally refrain from quantifying lightweight

and transient. As discussed in Chapter 3, the concept of databiting can vary signif-

icantly between individuals and contexts. This inherent variability creates a fuzzy

boundary, making precise quantification challenging. However, one constant re-

mains: within any given person or context, databiting tends to be more lightweight

and transient compared to comprehensive data exploration. Conversely, it requires

more effort and time than visually assessing a glanceable visualization. Yet, databit-

ing must remain feasible in-situ and while on-the-go. Analogously, in terms of

eating, snacking is undoubtedly more lightweight and transient than consuming a

full meal yet requires slightly more effort than simply viewing and assessing food

in front of you. Our goal with databiting was to offer data exploration equivalent

to snacking

Without quantifying lightweight and transient, a question remains: Did we

achieve our goal in enabling databiting—lightweight and transient data exploration

for increasingly rich insight? We believe there are results from within our final

study which support the success of databiting. Figure 8.1 highlights aspects of

transient and lightweight exploration, which we provide for discussion purposes

only and not as a concrete means for measure.
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Figure 8.1: For discussion purposes we introduce the above framing of lightweight and transient data exploration. We

provide this here, rather than in Chapter 3, due to the fuzzy and hard-to-quantify nature of these boundaries. As such, with

this figure we aim to provoke thoughtful discussion rather than establish definitive measures early on. While we recognize

that the smartphone, tablet, and laptop can provide glanceable and initial interactions we place them on the right of the figure

as this is where many interactions are meant to take place.
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First, transience is evident in the short duration of databiting interactions ob-

served in our final study. Participants were able to quickly integrate their data,

through input of a query, and even interpret the result without prolonged engage-

ment. In fact, the entire databiting interaction took less than 30 seconds on average.

While less transient than a glanceable visualization, importantly, this remains well

within the typical interaction time on a smartwatch [148, 192] while also remain-

ing largely under the typical interaction time seen on the smartphone, tablet, and

desktop which often involves interaction that are minutes at a time [132, 132, 179].

Lightweight interactions are more difficult to quantify. As such, we recognize

a lightweight interaction as one that simply does not require multiple and iterative

inputs from the person. Furthermore, this interaction should not hinder the pri-

mary task at hand. From our interviews with participants, and the endorsement

of databiting by all, we argue that the lightweight capability was largely achieved.

However, while databiting was in fact conducted during workouts, further sup-

porting its lightweight nature, we also recognize that the current implementation

of databiting was not seen as lightweight enough to be conducted during certain

workouts that require more attention and are faster paced (i.e., running). This find-

ing suggests that further work needs to be done to reduce the effort required to

achieve a databite under such circumstances. Such possibilities were discussed by

our participants in our final study and include simplifying the databiting interac-

tions through pre-meditated design of visualizations or selection of saved databit-

ing queries that are readily available.

Our goal, given that the interaction needed to be transient and lightweight, was

to ensure that people could still achieve insight rich generation of knowledge be-

yond what was currently possible. While some insight was actionable, participants

still expressed finding new insights, verifying unknown values, and aligning their

performance with their goals which was not a possibility prior given the displayed

metrics on the smartwatch. This allowed users to make informed decisions on-the-

go without the need for more time-consuming analysis. As a result, DataWatch

successfully bridged the gap between glanceable information and detailed explo-

ration, enhancing the overall utility and user experience of the data collected by the

smartwatch.
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The next logical question is how far can databiting go? In other words, how

much insight can be provided within a transient time frame and without much

effort. Regarding this question, we believe we are nearing the leading edge of

databiting interaction. Beyond the transient and lightweight boundaries discussed

in previous paragraphs, our studies in Chapters 5 and 7 reveal that value-based

databiting was most commonly desired and queried. Value-based responses are

intriguing as they do not offer the ability to further explore information or gather

serendipitous insight afforded by a visualization. This may have been influenced

by an understanding of the smartwatch’s limitations by our participants, where they

recognize other devices as more efficient for such exploration. Together, consid-

ering the temporal databiting findings, the lightweight maximum that was seen as

too much during certain workouts, and the value responses, this indicates that we

have likely found a reasonable maximum for databiting, providing quick, easy, ac-

tionable insights while maintaining ease of use and efficiency on the smartwatch.

8.2 Towards Speech Interaction for Personal Health
Data Exploration

Through DataWatch’s speech interaction capability in Chapter 7, and that of

our elicitation app in Chapter 4, spoken queries were integrated into everyday sce-

narios of our participants. This included being at the gym, walking alongside oth-

ers, and even in public settings such as a sports match. Notably, and for the large

majority, we found a significant shift towards a new, more positive, view of us-

ing speech as in input modality for providing personal health data queries. This

is largely impactful, as our studies were conducted in-the-wild using working pro-

totypes. Previous work that has found opposite, more negative, viewpoints has

largely been conducted in isolated, in-lab, or survey environments [55, 98, 116].

This shift was largely driven by a few common ideologies: First, bluetooth

headphones and interactions with voice assistants are becoming common place,

making the act of interacting less socially awkward than previously noted. Second,

the immediate benefit and ease of interacting through speech, especially while in-
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situ, was recognized by participants and outweighed drawbacks that may otherwise

arise. Third, data exploration of common metrics, as long as the answer is not

made aware to the public, was not seen as personal enough to cause concern. For

example, simply asking if one’s heart rate has been above their average is not a

query that gives away valuable and personal information.

However, it is important to recognize that this positive attitude towards speech

interaction is not universal. Half of our participants in our elicitation study in Chap-

ter 4 still had reserved privacy concerns, while one participant in our DataWatch

study in Chapter 7 did not use speech at all. Future research should continue to

explore ways to address these concerns, perhaps through increased multi-modal

interactive capabilities.

8.3 Semi-Longitudinal Study Methodologies

The choice of a one-week in-the-wild study methodology, used twice within

this thesis, was primarily motivated by the need to balance participant engagement

with the feasibility of accurate recall. Pilot testing revealed that in one week par-

ticipants could comfortably integrate the study application into their daily lives,

while periods longer than one week led to noticeable memory recall issues. There-

fore, a one-week study provided an optimal balance, allowing for natural use and

reliable data collection. Below we discuss benefits and drawbacks that were either

explicitly considered or a resulting lesson of the methodology used.

Benefits A variety of benefits, discussed below, arose from use of a one-week

in-the-wild study methodology, which were underscored by results presented in

previous chapters.

First, conducting a one-week study offers significant advantages in terms of

feasibility and practicality compared to increasingly longitudinal studies. The

shorter, one-week, duration is easier to manage and demands fewer resources,

which benefits both us as researchers and the participants who are giving their time.

With a one-week duration, the need for intermediate check-in sessions and pro-

longed support is minimized, simplifying the study process. Logistical challenges,
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such as scheduling and maintaining participant compliance, are also reduced, mak-

ing it easier to coordinate and conduct the studies. Additionally, the shorter study

period lowers overall costs, making it a more economical choice. Yet, consider-

ing these benefits, a one-week study remains to ensure that the necessary data is

collected without overhead unnecessary to the shorter-term goals of the projects.

Second, the practicality of the one-week study duration allows for quick and

frequent iteration of the study design. As demonstrated in the pilots conducted

in Chapters 4 and 7, the full and complete study methodology was able to be

employed, providing us with comprehensive insights regarding not only the in-

troductory tutorials, but also the technical limitations of the applications, and the

structure and flow of our interview. Together, having a complete understanding of

the study methodology, and even true data (i.e., data captured in the exact means

our study participants would report data) from which to analyze, we were able to

iterate components of our study design in a timely, yet complete, manner.

Third, a one-week study duration remained to allow for participant recall of

interactions and experiences. Over a longer duration, recall issues can set in, lead-

ing to less reliable quantitative reporting. In fact, during the interviews at the end

of the week, we observed that some participants occasionally needed a brief mo-

ment to recall contextual information related to an interaction, query, or use of the

applications that happened earlier in the week. While no complete recall issues

took place, we recognize the one week duration as bound to consider for recall

from participants using an application throughout their daily lives. By limiting the

study to one week, and importantly providing details of responses and interactions

within the interview (an element that was iterated upon in the study conducted in

Chapter 4 in part to the practical time frame used), participants were better able to

accurately recall details about their usage patterns, behaviors, and experiences with

the study applications. This overall recall accuracy results in higher quality data, as

participants’ reports are more likely to be precise and reflective of their true inter-

actions. Consequently, the qualitative insights gained from our one-week studies

can be considered reliable, allowing us to be confident in the results reported.

Finally, we believe that a one-week period strikes an optimal balance for par-

ticipant engagement, as it is long enough for users to become familiar with the
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novel application they are using, beyond that of the tutorials provided, while also

providing a chance to fully incorporate it into their daily lives. In fact P9 from

our final study supported this aspect by discussing “Yeah, I think my first couple of

ones were just like, okay, yeah, let’s just play around and see. But then, afterwards

I guess, the numbers I was looking for were a little more meaningful.” We believe

that the relatively short time frame also helps to maintain participant interest and

motivation, as it avoids the fatigue and disengagement that can occur in longer

studies. By keeping the study period concise, participants remain focused, inter-

ested, and committed; of our 30 total participants across the studies in Chapters 4

and 7 we only had one participant drop out of the the study in Chapter 4, due to

external reasons which they felt impeded their ability to participate.

Drawbacks While there are a variety of benefits, a one-week in-the-wild study

methodology can have drawbacks which we discuss below.

First, while a one-week period provides valuable insights into initial and short-

term databiting interactions, it may overlook long-term usage patterns and/or the

effects of sustained use over extended periods. For instance, changes in usage

frequency (i.e., number of databiting interactions during a workout), or shifts in

user preferences as interactions find a norm, may not come to be within just one

week. This is an acknowledged limitation (which we further discuss below in our

thesis limitations discussion). Increasingly longitudinal approaches are needed to

comprehensively understand how databiting evolves over time and the benefits that

are thus derived. Balancing the immediate understanding of short-term insights

with the need for long-term understanding is a key direction for future work which

can aim to provide a more holistic and comprehensive view of user behavior as it

pertains to databiting.

Second, the novelty effect present when using a new application, or simply

being involved in a study itself, presents a drawback that must considered. Ini-

tial enthusiasm and curiosity can influence participants’ interactions and behaviors

during the early stages of using a new app or device. Examples of this within our

work may include elicited queries which were provided simply due to participation

in the study but were not queries that regularly arise, or databiting interactions in
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DataWatch which would not be initiated beyond the novelty period of using the

application. Some participants, especially those that may have conducted grouped

exploration away from, before, or after a workout, are likely not to show this be-

haviour over an extended period of use (in Chapter 7—P3, P6, P10). Consequently,

data collected during the one-week study periods may not accurately reflect long-

term, habitual, usage patterns as previously discussed above.

To mitigate this drawback within our study design, we had participants inter-

act with DataWatch during the tutorial session (an aspect that was iterated upon

to support participants in their novelty periods); often, many started a workout in

DataWatch to view the metric screens, while we also encouraged participants to

ask questions both of us and to the DataWatch application (of which the data was

excluded from our analysis). We further provided remuneration that was not tied

to a number of responses, encouraged use only when it was deemed beneficial, and

reinforced the notion that interactions were not being evaluated against others in

the study. Combined, we believe this allowed for immediate impacts of novelty

to be mitigated, however, we must remain mindful of this potential bias and con-

sider common strategies to mitigate its impact. Further strategies for mitigation

include conducting follow-up studies after the novelty has worn off or adjusting

data analysis to account for initial enthusiasm outside a certain bounds.

Finally, capturing data in-the-wild poses unique challenges, especially when

we consider our desired lightweight and transient nature of databiting. As such,

a handful of elements were discussed throughout the creation of our final study

designs. Natural use was deemed as paramount; we felt that interactions during the

studies should act as close to the desired interactions as possible. Consequently,

intrusive methods such as frequent surveys (even if short) after every databiting

interaction was to be avoided to maintain the authenticity of user interactions and

perceptions of use from participants. Furthermore, the number of questions asked

within our elicitation study were in fact reduced to better coincide with in-situ use.

Achieving comprehensive data collection is of course crucial to understand our

research questions. As we are losing information that can be gained immediately

and in-situ, a blend of quantitative and quantitative insights, including through the

use of semi-structured interviews, ensures a comprehensive understanding of user
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experiences. To further supplement the data collection, we could in future include

notifications for supplemental data capture throughout the day, when may be more

appropriate, reflecting back on use since the last reporting. These mixed methods

approaches can further enrich data capture in-the-wild while not disrupting the

intended interactions.

8.4 Thesis Limitations and Future Work

Chapter-specific limitations and future work were highlighted within each pre-

vious chapter where applicable. Furthermore, Chapter 3, Section 3.3, highlights

in detail future research directions in pursuit of enabling databiting. In this thesis,

we largely focused on the interaction modalities research challenge, necessary to

first enable and validate such databiting exploration on the smartwatch. As previ-

ously discussed, other future research directions include 1) incorporating contex-

tual factors, 2) the relationship between databiting, glanceable visualizations, and

longer-form exploration, 3) personalization and customization, and 4) evaluation

challenges. Here, we provide more general thesis-level limitations and future work

as a result of these limitations.

8.4.1 Who is Databiting?

Throughout this thesis, an absent challenge is that of who is interested in

databiting. More specifically, we do not focus on how varying populations may

require different databiting interactions to explore data, and even the queries that

are of importance. As this is early work aimed at first understanding and then

building this form of lightweight and transient data exploration in-situ on the smart-

watch, our focus is on the larger general population that has been collecting data

for a minimum of three months. This criterion ensures that participants have some

knowledge of their needs and data, providing a more informed basis for our re-

search.

However, this approach notably excludes individuals. As example, those who

have only recently purchased a smartwatch may have very different health queries

160



given their initial exploration of the smartwatch’s capabilities. Moreover, those

being introduced to the collection of their personal health data may have varying

queries and databiting needs. Additionally, our work does not account for spe-

cific groups such as athletes, who may have unique performance-related queries,

or older adults and other individuals with chronic health conditions who might pri-

oritize different types of data. By not addressing these varied user groups, our work

may not fully capture the diverse range of queries and needs for databiting across

different demographic groups.

Future research should aim to explore these differences to create more inclu-

sive and tailored databiting solutions that cater to the specific needs of a broader

population. This includes conducting studies with diverse demographic groups,

considering factors such as age, fitness level, health status, health goals, experi-

ence collecting and exploring data, socioeconomic background, and cultural con-

text. By doing so, we can ensure that databiting interactions evolve to meet the

varied and specific needs of everyone, making data exploration on smartwatches

more accessible and impactful.

8.4.2 Study With Apple Device Users

Throughout this thesis, we focused our study on Apple Watch users. This deci-

sion was driven by two main factors: First, the time-consuming nature of develop-

ing for individual watch platforms led us to choose a single platform. Unlike smart-

phones, where frameworks like React Native can be used across multiple platforms

(e.g., Android and iOS), smartwatches do not offer similar cross-platform devel-

opment tools. Second, we chose the Apple Watch because it has the largest user

base in North America, making participant recruitment easier. Although this deci-

sion excludes users of other smartwatch brands (e.g., Google, Samsung, Garmin),

we believe that the common sensors, interaction modalities, and typical usage pat-

terns across all smartwatches minimize the potential diversity of queries that might

have been elicited and any differences in the functionality of the final application.

While perhaps a query regarding a derived metric (i.e., a combined score value

encompassing a range of raw captured metrics such as a Readiness Score or En-
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ergy Level) would arise, it is likely to remain to fall within an overarching insight

category. Therefore, while our focus on the Apple Watch is a limitation, it is un-

likely to significantly impact the generalizability of our findings, where as who (as

discussed above) is likely to provide greater influence.

8.4.3 Dataset of Desired Queries

Throughout, our objective was to understand and enable databiting on the

smartwatch. One key aspect of this understanding was to first gather what queries

were of desire. Much of the work put forward in this thesis then relies on the dataset

captured in Chapter 4. Specifically, the dataset captured contains 205 queries from

18 participants (on average 11.4 queries per participant). The closest work to this

by Rawassizadeh et al. [154], provides a dataset of 716 queries from 131 par-

ticipants (on average 5.5 queries per participant). However, study methodology

should be carefully considered. While it is feasible to collect queries quickly and

efficiently through online survey, producing a large dataset in the process, collect-

ing data with real-world validity is much more cumbersome, yet valuable.

A natural question that arises from any elicitation study is whether we have

captured all possibilities, either specific queries, broader insight categories, and/or

mechanisms used within a query. We cannot say with certainty that we captured

all possibilities, and it is entirely the case that given additional participants and

device capabilities that a specific query would arise that has not been previously

mentioned. An example of such a non-reported query could relate to outlier de-

tection (e.g., “Were there any instances of irregular heartbeats or atrial fibrillation

in the last day?”). However, we do believe that our dataset provides a compre-

hensive and importantly real-world report of desired queries. Specifically, when

coding insight categories of the queries, not only did we find examples of insight

categories previously noted in research, we in fact expanded upon categories while

also introducing a new category. Furthermore, when comparing our results to the

dataset captured by Rawassizadeh et al. [154], we found identical components that

make up a query. Again, however, we were able to expand upon filtering mech-

anisms and showcase divergence of interrogatives given our real-world context of
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the provided queries.

As our goal was not to train a model for understanding and resolving of queries,

a large dataset is not needed to accomplish our research goals. By coding queries

into overarching structures and insight categories, we were able to derive meaning-

ful patterns and insights from the collected data. Furthermore, the real-world con-

text of our data collection adds to the validity and applicability of our results, pro-

viding a strong foundation for not only our successful development of DataWatch,

but also for future research to build upon which has not been previously seen. How-

ever, more data would undoubtedly enhance the robustness and generalizability of

our findings. Future studies should aim to expand the dataset further, capturing

a wider variety of queries and participant demographics to validate and extend

the insights derived from our current dataset. This would help to ensure that the

databiting interactions we have identified are representative of a broader user base

and can be more effectively utilized in diverse real-world contexts while also be-

ginning to allow for training of models which can support such personal health data

exploration.

8.4.4 Part-of-Speech Tagging Versus Large Language Models

Deploying large language models (LLMs) on smartwatches for personal health

data exploration raises significant challenges that are not easily mitigated. These

include ethical concerns surrounding data ownership and control, model training

requiring substantial data, transparency of model features, and compliance with

regulatory frameworks [72]. Moreover, LLMs pose risks such as biased responses,

potential over-reliance or unsafe use, and exploitation of user trust to gain private

information [195], all of which could negatively impact personal health outcomes.

Additionally, on-board computation, though improving year over year, remains a

limitation for older smartwatch models still in circulation. For these reasons, and

to prioritize creating an immediate and accessible impact, we focused on imple-

menting a part-of-speech tagging approach.

Despite these challenges, LLMs are rapidly emerging as a highly capable and

promising tool. Thus, they should not be ignored. Unlike part-of-speech tag-
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ging, LLMs offer advanced query processing and contextual understanding. For

instance, a complex query such as, “Compare my heart rate and pace at each kilo-

meter of my run yesterday and my last 5K”, exceeds the capabilities of our current

approach. Furthermore, queries which require understanding, such as “How has

my sleep affected my running pace?” can not be currently handled. Recent re-

search has demonstrated the potential of LLMs in data informatics tasks [96, 178].

By leveraging their ability to synthesize and interpret complex natural language

queries, LLMs could unlock more dynamic and flexible interactions with personal

health data. Looking ahead, future work in personal data exploration and inter-

face customization will undoubtedly benefit from integrating LLMs while building

from and incorporating our findings throughout.

8.4.5 Enabling Preemptive and Proactive Insight

Preemptive and Proactive exploration was a new insight category found within

our collected dataset of desired queries. We believe that this was observed due to

our study setup where we emphasized to our participants that they should not worry

about the capabilities of existing technologies; whereas previous data exploration

work has been conducted with a working prototype, such as DataWatch was later

on, despite its limited functionality [30, 63, 98].

Currently, mHealth applications and smartwatch operating systems provide a

primitive form of preemptive and proactive insight. Notifications, suggestions, or

motivational reminders are often utilized to proactively encourage people to stand

up, breathe, or move after sedentary periods. However, these are limited in their

expressiveness and ability, and do not allow for data exploration to be included.

Our elicited queries were much more involved. The queries within this category

were aimed towards people utilizing their personal health data to prepare for future

events through system recommendations, see Chapter 4 Section 4. This included,

querying when to workout, how long to workout for, and specific workouts to do.

We actively chose not to support such queries within DataWatch at this time.

The looming limitation is that of ethical concerns in providing misguided infor-

mation which could in turn have adverse impacts. For example, if a person asks
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for a distance they should run, we must confidently be able to justify the response.

A value of 5 kms versus 10 kms is a difference that could significantly impact a

person’s physical well-being, potentially leading to injury or overexertion if the

recommendation is not appropriately tailored to the individual.

In the pursuit of enabling this form of insight in the future, many questions

arise; to showcase these, we highlight two queries from our dataset: ”How much

dancing do I need to do to burn 800 calories?” and ”Give me a suggested work-

out based on my readiness score?”. First, how should the answer be calculated?

Calculating the appropriate answer can be a challenge, especially when little prior

data is available or standards are unknown. Second, when providing an answer,

how can we convey uncertainty and variance to the user? These queries often do

not have a discrete answer available, with more factors and external data needing

to be considered. Finally, is this form of insight ethically possible? With the ability

to recommend, and ultimately have a person act upon an answer, this carries with it

the importance of not misleading a person which could have ramifications. These

areas of future study are important in enabling this form of beneficial and desired

insight on a smartwatch, and even for a broader set of devices.

8.4.6 User Adoption and Behavior Change

Our work is limited when considering the scalability and long-term use of

DataWatch and the underlying databiting interactions that it is built upon. This

thesis primarily focuses on initial user intentions and preferences, which may not

accurately reflect long-term user behavior. While this initial study allows us to ex-

plore and argue the feasibility of such interactions, it does not support the notion of

long-term use. Given an extended period of time, people may exhibit different en-

gagement patterns, as we already saw within our week long studies. This differing

use can be influenced by evolving personal goals, changing contexts of use, and the

perceived benefit that is gained from such interactions. However, as we see from

the lived personal informatics model proposed by Epstein et al. [59], exploration

practices revolve and evolve as time goes on. This suggests that initial databiting

interactions may be targeted again over time even after a period of non-use.
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Furthermore, sustained interactions with a novel system such as DataWatch are

inherently challenging to achieve. While initial adoption may be driven by novelty

and curiosity, maintaining consistent usage requires the technology to integrate

seamlessly into users’ daily routines and provide continuous value. While we ar-

gue that integration in-situ is wholly feasible, sustained value is something we did

not explore. Factors such as usability, perceived usefulness, and ongoing user en-

gagement strategies play critical roles in fostering long-term interest of databiting

practices to the benefit of the people conducting such exploration.

Overall, while databiting and the following DataWatch application shows promise

and feasibility for lightweight and transient access to personal data, further re-

search is needed to address the limitations related to long-term user adoption and

behavior change as a result of interactions and insights gained. Investigating how

users interact with the technology over extended periods, understanding the factors

that influence sustained engagement, the influence of databiting on further explo-

ration and vice versa, and quantifying long-term behaviour change as a result of

databiting practices will all provide further valuable insights for improving the the

scalability and long-term usability of databiting.
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Chapter 9

Conclusion

The research, and its outcomes, in this thesis provide an understanding and

implementation of databiting, including the conceptualization of this lightweight

and transient approach to data exploration (Chapter 3), elicitation of queries from

smartwatch users in their daily lives (i.e., what, when, where, and why queries are

desired—Chapter 4), and an analysis of input and output requirements (i.e., how

we can support databiting on the smartwatch—Chapters 5 and 6). This founda-

tion of knowledge then supported the development of DataWatch (Chapter 7), a

smartwatch workout tracking application that facilitates in-situ databiting explo-

ration of past workout fitness data through lightweight and transient interactions

using touch and speech, enhancing peoples’ ability to gain insights during various

phases of their workouts.

The findings from this research provide overarching insight that carries impor-

tance for the future of smartwatch and broader on-the-go mobile health applica-

tions. Specifically, the potential for smartwatches to offer deeper, more interactive

engagement with personal health data is not only desired but wholly achievable.

People seek more from their smartwatches than passive data collection; they want

insightful and in-situ engagement that informs and motivates their fitness activ-

ities. DataWatch exemplifies how smartwatch health applications can evolve to

begin to meet these expectations by facilitating in-situ exploration of past work-

out data through lightweight and transient touch and speech interactions—known

as databiting. This approach to data exploration was demonstrated to be feasible

on the smartwatch while in-situ and offers benefits including introducing increased

actionable insights and motivation to further engage with collected data.
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9.1 Summary Contributions of the Thesis

In summary, the overarching contributions of this thesis are as follows:

C1: An introduction of the term databiting, conceptualized as lightweight and

transient data exploration, that bridges the gap between quick, glanceable

data visualizations and more extensive, detailed data analysis. Further to

providing a conceptualization of databiting, we also discuss potential bene-

fits and highlight future, and necessary, research directions. This foundation

sets the stage for developing more intuitive and effective ways for people

to engage with their personal data, both on smartwatches and other mobile

platforms.

C2: An elicited, and now publicly available, dataset of 205 personal health data

queries desired for exploration on a smartwatch throughout daily life. This

dataset, coupled with a thorough qualitative and quantitative analysis, offers

valuable insights into what personal health data query needs people have,

including when, where and why these queries arise.

C3: Interaction requirements for lightweight and transient exploration of per-

sonal health data on smartwatches. We identify key dimensions of our cap-

tured queries, such as interrogatives, data sources, aggregations, and filter-

ing mechanisms, which are crucial for enhancing input methods, particularly

natural language processing capabilities. Additionally, we gather insights on

user preferences for different output structures from voice assistants, focus-

ing on perceived quality, behavior, comprehensibility, and efficiency. These

findings provide essential guidelines for optimizing both input and output in-

teractions, ensuring that data exploration on smartwatches can be supported

in being lightweight and transient.

C4: Development and validation of DataWatch, an Apple Watch application that

demonstrates the practical implementation of databiting. By integrating

multimodal interactions, specifically touch and speech, DataWatch enhances

in-situ exploration of past workout data, demonstrating the feasibility and
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user benefits of providing lightweight and transient data exploration capabil-

ities directly on the smartwatch.
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[11] Lonni Besançon and Pierre Dragicevic. The continued prevalence of di-

chotomous inferences at chi. In Extended Abstracts of the 2019 CHI

Conference on Human Factors in Computing Systems, CHI EA ’19, page

1–11, New York, NY, USA, 2019. Association for Computing Machin-

ery. ISBN 9781450359719. doi: 10.1145/3290607.3310432. URL https:

//doi.org/10.1145/3290607.3310432. → pages 95

[12] Timothy W Bickmore, Ha Trinh, Stefan Olafsson, Teresa K O’Leary, Reza

Asadi, Nathaniel M Rickles, and Ricardo Cruz. Patient and consumer safety

171

https://doi.org/10.1145/3290607.3310432
https://doi.org/10.1145/3290607.3310432


Bibliography

risks when using conversational assistants for medical information: an ob-

servational study of siri, alexa, and google assistant. Journal of medical

Internet research, 20(9):e11510, 2018. → pages 88
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Appendices

Appendix A: Study Tutorials

Chapter 4 Tutorial Slides

The following slides were used during the tutorial portion of the study con-

ducted in Chapter 4. A live demo of the application was included during the tuto-

rial.
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Study Information, Setup, and 
Tutorial

Study Overview
● This study will have you: 

○ Meet via Zoom for introduction, application setup, and a short demographic survey (~45 minutes) 

○ Use a smartwatch application to simply report responses throughout your day (1 week / 7 days) 

○ Meet via Zoom to do a one-on-one interview (~45 minutes) 

● We will do everything in our power to provide a good experience for you during the study and hope 

for your involved participation throughout which will compensate up to $30 USD for your time by 

way of an Amazon gift card
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Overview

Online Consent - In Progress 

Study Overview 

Demographic Survey 

Download Smartwatch Application and Tutorial 

Practice, Final Thoughts, and Participate!

Online Consent

Please go to the link below to read and, if comfortable, sign the online 

consent form. 

If any questions arise, do not hesitate to ask.

QR Code 
removed for 
anonymity 
purposes
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Overview

Online Consent - Done  

Study Overview - In Progress 

Demographic Survey 

Download Application and Tutorial 

Practice, Final Thoughts, and Participate!

Study Goals

Our high level goal is to allow you to better explore and understand your 

personal health data on your smartwatch.
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Study Goals

• To explore what questions and/or 

commands people have of their personal 

health data on their smartwatch 

• To explore when and how people wish to 

interact with their personal health data 

on their smartwatch

Important Remarks
● We are NOT collecting ANY of your personal health data or other metrics/data behind the 

scenes, such as your location; the application can NOT access this information 

● We are NOT testing for specific responses or evaluating your performance in the application 

and throughout in the questionnaire and interview
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Important Remarks
● We are only COLLECTING what you provide within the application itself: 

1. The question or command you have of your personal health data 

2. Your current activity 

3. If the question relates to your activity 

a. If so, the time within that activity 

● We are INTERESTED in any questions or commands you have of your personal health data 

● We are looking for HONEST responses throughout 
● Your SAFETY when using the application is paramount, so please only respond if and when it is 

safe to do so

Overview

Online Consent - Done  

Study Overview - Done 

Demographic Survey - In Progress 

Download Application and Tutorial - Done 

Practice, Final Thoughts, and Participate!
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Demographic Survey

Please go to the link below to fill out the demographic survey. 

If any questions arise, do not hesitate to ask. 

I will let you know your participant ID to include in the survey.

QR Code 
removed for 
anonymity 
purposes

Overview

Online Consent - Done  

Study Overview - Done 

Demographic Survey 

Download Application and Tutorial - In Progress 

Practice, Final Thoughts, and Participate!
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Download the Application

1. Install TestFlight on your iPhone 
● This is Apple’s Beta software testing application and allows us to share our application 

with just you and not everyone in the world

Download the Application

2. Read through and accept Apple’s terms and conditions if 

comfortable 
● We will not be accepting any crash report information, as such we will not collect any 

background information from your device
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Download the Application

3. Simply open the invitation email sent to your email address

Actual 
screenshot 
removed 

for 
anonymity 
purposes

Download the Application

4. This will open the TestFlight application. Now, simply click Install. 
You are good to go!

Actual 
screenshot 
removed 

for 
anonymity 
purposes
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Application First Steps

● Let’s set up the following so that the application is ready to go for the study: 
1. Watch face component 

○ This will provide a home-screen reminder of the study for the next week 

2. Notification times 
○ Notifications will occur randomly throughout the provided start and end times to help 

remind you of the study in progress

Study 
Reminder

Application Usage

● Please watch as I demonstrate the application. Please let me know if you 
have any questions!
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Application Usage
● When you open the application, you will see the home screen 

○ This is the screen where you can record your questions about your data 
○ Tap the “Tap to Record” button to speak or write your question

What question 
would you like to 
ask of your data?

Press this button to record or 
write your question

Application Usage

● Here, you can select speech or writing to record your question

Select either 
speech or 

writing

Tap ‘done’ when finished 
recording. This brings you to the 

next page

Your question appears here

You can tap 
cancel at any 

time
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Application Usage

● Activity 
○ This will ask you to record or write your current activity

Press this button to record or 
write your answer

What are you 
currently doing?

Application Usage

● Here, you can select speech or writing to record your question

Select either 
speech or 

writing

Tap ‘done’ when finished 
recording. This brings you to the 

next page

Your question appears here

You can tap 
cancel at any 

time
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Application Usage

● Question Related to your Activity 
○ This question will ask if your question is related to your current activity 

(Yes) or not (No)

Select whether 
your question 
is related to 
your current 

activity

You can go 
back at any 
time here Is your question 

related to your 
current activity?

Yes

No

Application Usage

● Time in the Activity 
○ If your question is related to your activity, we will ask where in the activity 

you currently are

Select a time 
within the 

activity here. 
This will bring 
you to the next 

screen

You can go 
back at any 
time here
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Application Usage

● Final Screen 
○ This screen allows you to review your response before submitting

Submit your 
response here. 

Tapping this 
brings you 

back to the first 
home screen

You can go 
back at any 
time here

Scroll (slide 
your finger on 
the screen or 

use the crown) 
to see more if 
the screen can 

not show 
everything

Here’s what you entered: 
Question: Test 
Activity: Test 

Related to Activity: 
Yes 

Time: During

Overview

Online Consent - Done  

Study Overview - Done 

Demographic Survey - Done 

Download Application and Tutorial - Done 

Practice, Final Thoughts, and Participate! - In Progress
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Practice Responses

1. First practice response 
● Open the study application on your watch 

● Record ‘This is my first response for the study’, select ‘done’ when done 

● Record ‘Application Training’, select ‘done’ when done 

● Select ‘Yes’ 

● Select ‘During’ 

● If happy, select ‘Submit’ 

● Congratulations you just quickly and easily submitted your first response!

Practice Responses

2. Second practice response 
● Open the study application on your watch 

● Record ‘This is my second practice trial’, select ‘done’ when done 

● Record ‘An activity not related to training’, select ‘done’ when done 

● Select ‘No’ 

● If happy, select ‘Submit’ 

● Congratulations you just quickly and easily submitted your second response!
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What We Are Interested In
• We are interested in any questions or commands related to: 

• Personal health data that you capture/track on your smartwatch and 

wish to explore further directly on your smartwatch 

• We want your responses to ideally allow you to better explore and 

access your personal health data

What We Are Interested In
• Possible categories of questions or commands you may be interested 

in include: 
• Current status of data 

• History of data 

• Goals, performance, and/or record based 

• Missed data or discrepancies 

• Contextual 

• Combinations and/or comparisons of data
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What We Are Interested In
• Don’t worry about current technology or applications 

• Express whatever questions or commands you have, however feels natural to you, 
that you want answers to! 

• Duplicates are okay, if they arise multiple times within the week 
• We just ask that you only provide responses when they are relevant to you 
• We do want the response to have an element of personal health data to it 
• The responses should be something you want to be able to access on your smartwatch 

• The questions/responses you provide will help create better technologies and 
applications for you in the future!

What We Are Not Interested In
• We aren’t interested in questions related to day-to-day 

smartwatch function 

• These would be typical questions you might ask of Siri: 
• What is the weather today? 

• What is the time? 

• Has my friend messaged me back? 

• Do I have any emails?
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Final Thoughts

• You can use the application any time you have a question or command of 
your data 

• You do not need to wait for a notification or specific time 
• Enjoy this opportunity to be able to ask all the questions and say commands 

of your data on your smartwatch you’ve ever wanted, or think would be helpful, 
for a better future experience for you! 

• Please wear your watch as you normally would throughout the study 
• Only submit responses when it is safe to do so 

Thanks!
Thanks for your time in participating in our study, again if there are any 

questions or concerns throughout, please do not hesitate to contact us! 
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Chapter 7 Tutorial Slides

The following slides were used during the tutorial portion of the study con-

ducted in Chapter 7. A live demo of the application was included during the tuto-

rial.

222



Study Information, App Setup, 
and Tutorial

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

Thank you!

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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Consent Form

Please use the provided qr code shared onscreen to complete the consent form

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

Today’s Intro Session Overview

1. General Study Overview (~5 minutes)


2. Demographic Survey (~10 minutes)


3. Smartwatch App Installation (~5 minutes)


4. Smartwatch App Tutorial (~10 minutes)
Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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1. General Study Overview

• This study consists of three major components


1. Introductory study session (currently taking place)


• Learn about our study goals and how you can use speech and touch to explore your personal health data on 
the smartwatch 

2. One-week use of our smartwatch application


• Explore your personal health data on your smartwatch throughout daily life and recorded workouts 

3. Final interview session


• Interview about your experience using the smartwatch application

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

1. General Study Overview

• Our high level goal is to allow you to better explore your personal health data 
directly on your smartwatch


• We are interested in how using speech and touch can allow for exploration

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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1. Important Remarks

• We are NOT collecting and recording ANY of your personal health data, 
location, or audio recordings


• We are NOT testing for specific responses or evaluating your performance 
throughout the study (i.e., you are NOT being tested and there are no right or 
wrong answers)

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

1. Important Remarks

• We are INTERESTED in how speech and touch can be used to access your 
own personal health data on the smartwatch


• We are INTERESTED in the questions you ask and when you ask these 
questions

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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Any questions so far?

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

Today’s Intro Session Overview

1. General Study Overview (~5 minutes) ✅


2. Demographic Survey (~10 minutes)


3. Smartwatch App Installation (~5 minutes)


4. Smartwatch App Tutorial (~10 minutes)
Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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2. Demographic Survey

Please use the provided qr code shared onscreen to complete the survey

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

Today’s Intro Session Overview

1. General Study Overview (~5 minutes) ✅


2. Demographic Survey (~10 minutes) ✅


3. Smartwatch App Installation (~5 minutes)


4. Smartwatch App Tutorial (~10 minutes)
Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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3. Smartwatch Application Installation
Install TestFlight

• Install TestFlight on your iPhone through the App Store 

• This is Apple’s Beta software testing application and allows 
us to share our application with just you and not everyone 
in the world 

• After installing TestFlight, open TestFlight and accept the 
terms and conditions


• We will not be recording crash report information, as such 
are NOT collecting background data from your device

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

3. Smartwatch Application Installation
Install Our Smartwatch Application

• Scan the QR code below with your iPhone 

• This will open TestFlight and allow you to install our app on your Apple Watch

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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3. Smartwatch Application Installation
Install Our Smartwatch Application

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

Today’s Intro Session Overview

1. General Study Overview (~5 minutes) ✅


2. Demographic Survey (~10 minutes) ✅


3. Smartwatch App Installation (~5 minutes) ✅


4. Smartwatch App Tutorial (~10 minutes)
Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides
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4. Smartwatch Application Tutorial

• Why do a tutorial?


• To familiarize you with our smartwatch application 

• To help you smoothly interact with and explore your data during the study 

• To answer any questions that you may have regarding the application
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4. Smartwatch Application Tutorial
Tutorial Shown On-Screen With Live Application

Version 1.0, June 29, 2023, H23-00805, Appendix_G_Intro_Slides

231



Exploration Times

• You can explore data at three unique times within a workout


• Before starting a workout – long press on the workout type that you are 
interested in exploring data for 

• During a workout – long press on a metric that has a blue dot beside it and that 
you’d like to explore, or swipe to the controls screen and use the microphone 

• After a workout – long press on a metric that has a blue dot beside it and that 
you’d like to explore
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Exploration Modes
• You can explore data in three unique ways


• Value – Use “What Is/Was, Highlight, Find” in your question 

• Browse – Use “Show, Explore, Browse, View” in your question 

• Compare – Use “Compare, Combine, Contrast” in your question
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Example Time Expressions

“This month”	 	 	 	 June 1 – June 23, 2024


“From March 1 to 20”	 	 	 March 1 – March 20, 2024


“Summer 2020”	 	 	 	 June 1 – August 31, 2020	 


“Since March 1”	 	 	 	 March 1 – June 23, 2024


Around last Christmas	 	 	 December 22 – December 28, 2024


Last/past week/month/year…	 	 	 …


September 2023	 	 	 	 September 1 – September 30, 2023


…
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Example Activity Expressions

“Last time”	 	 	 	 Your last tracked workout


“Last workout”	 	 	 	 Your last tracked workout


“Last 5 times”	 	 	 	 Your last 5 tracked workouts


“Last 9 times”	 	 	 	 Your last 9 tracked workouts


“Past 7 walks”	 	 	 	 Your last 7 walks


“Past 4 bike rides”	 	 	 	 Your last 4 bike rides


…
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Calculated Values

• You can ask for the average, min, max, total of data


• Average is calculated by default if nothing is mentioned. To get an average you 
can also use average, mean, overall 

• To get a min/max, you can use min/max, shortest/longest, slowest/fastest, etc. 

• To get a total of data added up, you can use total, how many/much/far/long, 
count
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Data

• You can ask questions about the following data


• Duration 

• Distance 

• Pace 

• Calories Burned 

• Heart Rate
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A Couple Things To Note

• DataWatch can not answer questions that make inferences of your data


• Examples of questions not supported:


• Is my pace faster than last week?


• Have I walked farther than last month?


• Am I on track to meet my goal?


• Should I run 5km today?
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A Couple Things To Note

• DataWatch also does not support exploring multiple time periods


• Examples of questions not supported:


• Compare my pace from last month to April 2023


• What was my total distance walked this January and last January?


• Show my average heart rate this month to May last year
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A Couple Things To Note

• DataWatch does support the ability to view your collected data and/or get a 
calculated value from your collected data


• Examples of questions supported:


• Compare to my pace last year


• Show me my distance walked in the last month


• What is my average heart rate in the last five walks?
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Some Other Questions to Get You Started

• Here are some additional examples of questions that DataWatch supports:


• How does this compare to my average in the last five workouts?


• What was the farthest I walked in the last month?


• How far have I walked in 2024?


• Show me my fastest pace April
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One Caveat

• To ask a question on the watch, your iPhone needs to be unlocked


• This is a security feature from Apple which does not allow access to your 
collected health data unless your device is unlocked


• We recommend simply holding your iPhone in your watch wearing hand, 
unlock your phone, and then interact on the watch
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Any questions?
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Final Thoughts

• We hope you enjoy this opportunity to further explore your personal health 
data on your smartwatch


• Please use our application to record any workouts you do throughout the 
one-week study period


• Please wear your smartwatch as you normally would throughout the study


• Please only ask questions and/or commands when it is safe to do so
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Thank you! 

Please reach out with any questions 
or concerns if needed.
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Appendix B: Dataset of Collected Queries

Chapter 4 Collected Data

The following is the publicly available dataset captured from the smartwatch

application during our study. The dataset has been made available, as linked in

our publication at https://smartwatch-personal-health-data-queries.

github.io.
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activity query relatedToActivity time

Eating lunch How much dancing do I need to do to burn 800 calories Yes During

On break Summary of my sleep cycles No

Dancing During which song did I burn the most calories Yes After

On break Summary of my sleep cycles No

Lying down Which activity had the highest calories burned per 
minute No

Taking a break from 
work

How many times was I awake last night and for how 
long No

Finished taking a 
practice final exam

When during the last two hours with my highest heart 
rate Yes After

Dancing Compare calories burned this dance session to past 
sessions Yes After
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About to go on a walk How many more minutes of exercise do I need to reach 
my exercise goal for the day Yes Before

Working
Based on my activity during the month of October how 

should I adjust my three goals for the month of 
November

No

About to go on a walk How many steps have I taken so far today Yes Before

Sitting down Did I close all three of my rings for the day No

I'm sitting Did I close all of my rings today No

Sitting How many steps did I take today No

Just finished a 
workout How many times have I worked out this week Yes After

On a walk How many steps have I taken so far today Yes During

Working
How many times did I work out in the past week and 
how does this number compare to that the number of 

times I worked out the week before that
No
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Working How many times did I close all three rings during the 
month of October No

At work how many days left to my period No

I am doing a little bit 
of work out compare the heart rate of my friends and mine Yes During

Doing homework I would like to check a trend is my sleep in the past 
seven days No

Preparing dinner What is my current calorie intake Yes Before

Going to work Should I go for a run today? No

Getting ready for work Am I over or under my calorie goal at the moment No

Going out How many calories that I login for breakfast No

At work How much uninterrupted sleep did l get last night? No

242



Working out What is my current bloodpressure Yes During

Bus Did I complete my water goal yesterday? No

studying in library How many calories did I burn in the last 4 hours? No

Brushing teeth What's my average sleeping time this past week No

Getting out of bed Do I need more sleep? Yes After

Arriving home How many steps left do I need to complete my goal No

Going to the gym When was the last time I ran and what was the time Yes Before

Cleaning up after 
workout What was my peak heart rate during my workout Yes After

Brushing teeth Did I reach my water intake goal? No

243



Walking home How many steps did I take in the past seven hours Yes During

In bed Was my sleep longer than last time? Yes Before

Getting ready to sit 
down for the evening

What type of workout do I burn the most calories per 
minute historically No

Out on a walk 
trudging through the 

snow

What is my average walking pace in the winter versus 
the summer Yes During

Laying on the couch 
watching a 

documentary about 
how efficient coyotes 

gate is

Has my heart rate during walking decreased since I 
started tracking walks No

Just woke up from a 
nap at 10:57 and 

didn't have my 
standing minute yet

When am I most and least likely to get and miss my 
standing minutes No

Sitting in the car at 
6:30 PM with several 
hundred calories left 
clues my move ring

What kind of workout do I usually do if I have 200 or 
more calories to close my moving ring No

Just returned home 
from a short walk

What is my weekly average walking kilometres with the 
walking workout? Yes After

Hockey game 
intermission

Do I burn more calories when I work out in the morning 
afternoon or evening? No
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Sitting in the meeting 
with Bradley

Is my running pace slower in the days following a 
strength training workout? No

Final study meeting 
with Bradley

Is my first 2 km of walking pace faster or slower than my 
last two No

Getting ready to go to 
the gym Give me a report for my readiness for activity Yes Before

Gym What's my blood sugar level Yes After

Getting ready to go to 
the gym Why is my Sleep report from last night so bad No

Gym Give me a suggested work out based on my readiness 
score Yes Before

Dinner preparations If I have tacos tonight how will that affect my sleep and 
readiness score for tomorrow No

Grocery shopping How will not going to the gym during the holiday 
weekend affect me No

Grocery shopping for 
Thanksgiving

How has the stress from the last two hours of grocery 
shopping for Thanksgiving affected my readiness score 

for today
Yes During
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Outdoor walk How is the air quality affecting my walk Yes During

Gym How did today's gym session compared to the last one 
given that I was sick this time Yes After

Walking to the car Is my heart rate slower or faster than normal Yes During

Drinking lots of beer Does drinking beer impact my sleep Yes Before

Laying on the sofa 
sick

Does my heart rate look any different compared to the 
average Yes During

Just finished 
exercising How many steps did I take my outdoor walk Yes After

Finished walking How many steps did I do on that short walk Yes After

Sitting When is my period going to start No

Standing What is my resting heart rate No
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Sitting How many hours did I sit yesterday Yes During

Sitting at my desk How much of my day have I spent sitting Yes During

Going to bed What was my average resting heart rate today No

Working What has my resting heart rate been since I put my 
watch on Yes During

Finished mopping How many calories did I burn mopping Yes After

Standing up How many hours was I sitting for today No

Sitting How many steps have I taken this week No

Walking How many steps did I just take Yes After

Standing How many calories did I burn today so far No
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Getting ready for bed How many hours did I spend sitting today No

Getting ready for bed What is my average step count per day No

Running How many steps did I take during my run Yes After

Getting ready for bed What was my peak heart rate of the day? No

Getting ready to 
exercise How many runs have I completed thus far in 2021 Yes Before

Eating lunch after run Show me a graph of my runs both time and distance in 
2021 Yes After

Just finished my work 
out

How many times and for how long did my heart rate 
rise above 130 today? Yes After

Homework How many miles have I accumulated through walking, 
running, biking over the course of this year No

Making breakfast Over the last three months how many days have I beat 
Marianne on step count No
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Walking Tell me when I reach a nine minute walking pace Yes During

Standing What is the average time I closed my stand ring during 
last year Yes During

I just got up Tell me the specific days of the week in the last three 
months where my weight tended to trend up or down No

Making breakfast Over the last year when I breathe when directed by my 
watch does it lower my heart rate No

Getting ready to go for 
a walk Tell me when I reach a nine minute kilometre pace Yes Before

Getting dressed
What has Marianne's most active day of the week been 
over the last three months and what has my most active 

day of the week been on average
No

Getting dressed How many times have I tested for signs of atrial fib 
relation since I got my watch No

Having lunch What is the average time I start tracking my steps in the 
day over the last year No

Watching the news How many times have I not closed my rings in the last 
year No
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I just got up Is my heart rate consistently the same when I first put 
my watch on in the morning Yes During

I just finished taking 
an ECG reading What have my ECG readings been sense August 1 Yes After

Walking Tell me when I reach a nine minute per kilometre pace Yes During

Reading a notification 
about Marianne on 

our fitness challenge

Is there a day of the week I am more likely to beat 
Marianne in our fitness challenge Yes During

I am leaving on a solo 
walk

Does my walking pace change when I walk with 
someone else Yes Before

Walking How much has my pace fluctuated during my walk Yes During

Cooking breakfast What are the average steps I take on a Sunday No

Yardwork What was my highest heart rate in the last hour Yes After

Weighing myself What was my average weight in October Yes After
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Walking What was my average resting heart rate in October No

Watching TV How many steps do I have left to make my goal today No

Starting my day Show me a chart of my weight loss over the last two 
weeks, my steps, and my caloric intake No

About to eat Can I eat squash soup and two pieces of toast and still 
be below my calorie budget Yes Before

Waking up starting my 
day How much sleep did I get last night Yes After

About to lay down How long have I been lying down today since first 
waking up Yes Before

Getting my day 
started

Show me a graph comparing my caloric intake over the 
last week No

Working How many calories do I have left on my budget for the 
day No

Working Show me the history of my weight over the last two 
years No
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Working How long does it normally take me to walk 5000 steps No

About to go walking How many steps do I have left to do today Yes Before

Working How many calories do I have left in my bank for today? No

Driving How many steps do I have left to make my goal No

Planning my next run 
while working When is a good time for me to run after the rain stops No

breakfast what is the impact of rain in my running performance No

working when do I need to exercise to improve my vo2 max No

waking up what is the rowing equivalent for my running No

Rowing What is my stroke rate while rowing Yes During
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Having breakfast How can I improve my resting heart rate No

Eating What are the effects of BMI Yes During

looking at HRV 
indicator what does heart rate variability mean Yes During

Working What is my performance compared to same time last 
year No

Outdoor walk How long do I need to run three times per week to 
achieve the November challenge Yes During

preparing to sleep what helps me get better sleep? Yes Before

waking up why am I sleeping bad lately? Yes After

Having breakfast How can I increase my VO2 Max No

having lunch what is the impact of my sleep in my running? No

253



Watching a video Have I stood up this hour No

having breakfast compare my running stats with the same time last year No

Weight lifting Am I in the right heart rate range for this type of work 
out Yes During

Outdoor walk How does my walking pace change depending on the 
length of a walk Yes During

Walking outside How long does it take after a walk to get back to resting 
heart rate Yes After

Weightlifting Is my work out better at my home gym or commercial 
gym Yes After

Weightlifting Does weightlifting focussing on different muscle groups 
affect my heart rate Yes After

Stationary bike How long does it take for my heart to reach optimum 
heart rate during a cycling work out Yes During

Sitting How much lower is my activity today because it's Friday Yes During
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Working out Compare the heart rate of this work out to last work out Yes After

Waking up and going 
to the gym What workout do I have planned for today Yes Before

Laundry How many kilometers do I need to walk to get 10,000 
steps No

Making lunch What was my best kilometer during my run No

Driving What was my fastest kilometer in my run No

Driving When was the last time I did a full 5K No

Driving passenger Show me a graph of my 5 km outdoor runs over time No

Just out of the shower How many steps did I get during my dance workout 
today No

Just out of the shower Show me a history of all my dance workouts No
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Going for a walk How long should I walk to get 10,000 steps today Yes Before

Watching TV When should I be expecting my period No

Dance workout How many more steps do I need to get to 10,000 Yes Before

Getting ready to go for 
a walk Give me a 2 km walk route starting from home Yes Before

Back from walk How many steps did I get during that 2 km walk Yes After

End of work out How many calories did I burn that work out Yes After

Just getting off the 
treadmill How many steps am I at today Yes After

On a zoom meeting How many calories have I eaten today No

Dance workout How many active minutes am I at Yes During
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Eating lunch How many steps have I taken today No

Walking What's my average walking pace per kilometer Yes During

Eating supper How many minutes of aerobic activity would it take me 
to burn 200 cal? No

Working out What's my daily calories burned this week? Yes After

Going for a walk What's the fastest that I walked 2 km outdoors? Yes Before

Walking Show me a graph of my average walking speed during 
outdoor walk Yes After

Waking up How many hours of deep sleep did I get last night? Yes After

Waking up Show me a graph of my sleep quality from last night Yes After

Eating breakfast What's my blood oxygen level when I'm sleeping? No
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At the park What's my average steps per day? Yes During

Eating supper What are my calories burned on weekends versus 
weekdays? No

Working out Compare max heart rate from this work out to Monday's 
work out. Yes After

Work out What are average calories burned for HIIT work out? Yes After

Working out What are my average non-active calories burned per 
day? Yes After

Work out Alert me when my heart rate gets back to my average 
resting heartbeat Yes After

I am at work How long on average does it take me to fall asleep? No

Working How much time do I spend sitting on average Monday 
to Friday? Yes During

Working What's my average calories burned in the morning 
versus afternoon versus evening? No
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Playing with kids. What was my calories burned in the last 30 minutes? Yes During

Working at my desk How many calories have a burned since 8 AM? No

Walking What is my average walking pace? Yes After

Walking Compare walking pace September and October Yes After

Sitting at my desk What is my blood sugar at No

Going to the gym Do I need to eat something before I go to the gym Yes Before

Walking home from 
the gym

Should I stop trying for linear growth based on my last 
workout Yes After

Sitting home What are the factors most likely impeding my squat 
growth No

Sitting on my desk Based on my current biometrics when will be the best 
time for me to work out today No
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Dead lifting How many reps was my last set Yes During

Walking to the gym What's the best exercise for me today Yes Before

Squat What was my RpE perceived exertion Yes During

Walking home What is my projected one rep maximum No

Sitting at home About how long will it take me to reach my squat 
deadlifts and benchpress goals No

Watching TV How many calories did I just eat No

Sitting around being 
tired Is my cycle affecting my sleep Yes During

Trying to sleep Compare data points from nutrition and heartrate and 
sleep No

Nothing Compare cycle data from today to the same day in my 
last cycle No
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Reviewing the days 
activities Compare data points from different types of activity Yes After

Reviewing the day of 
activity

Compare data points across different activities within a 
cycle of a specific number of days Yes After

Thinking about what 
to make for dinner

What is the recommended calorie intake for dinner 
today Yes Before

Just got home 
relaxing

Was the 1st km of my hike faster than the last kilometre 
today No

Walking home from 
the gym How many calories did I burn playing badminton today Yes After

Walking home from 
the gym Show me my heart rate chart from today's gym session Yes After

Walking How many steps did I do yesterday versus today Yes During

Weighing myself Show me my weight loss trends in the past month Yes During

Thinking about what 
to make for breakfast What is my calorie budget for today Yes Before
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Reflecting on my 
fitness journey and 

today's goals

How many calories were burned in today's work out 
compared to yesterday No

Walking home from 
the gym

On average was my heart rate lower during today's run 
compared to yesterday Yes After

Eating a banana How many calories is in a medium size banana Yes During

Doing homework How many steps should I take today and is it less than 
yesterday No

Weighing myself Show me my bodyweight trends for this month Yes During

Journalling What was my average heart rate during weight training 
today No

Journalling How many calories over budget am I today No

Just got home 
relaxing now How fast did I finish my 1st km on my hike today No
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